

Ministry of Finance of the Republic of Tajikistan

Shape your world

Ritsumeikan Asia Pacific University

EXPLORING THE POSSIBILITY OF USING MINING SECTOR FOR

PROMOTION ECONOMIC DEVELOPMENT

OLIYA MAXUDOVA

Doctoral student in the School of Asia Pacific Studies Ritsumeikan Asia Pacific University SAROJ KAFLE MA Sansin Sangyo Ltd.

CONTENT

- > INTRODUCTION
- MINING SECTOR IN TAJIKISTAN
- LITERATURE REVIEW
- METHODOLOGY
- DATA ANALYSIS
- CONCLUSIONS
- > REFERENCES

TAJIKISTAN Overview of Current Economy

3

OVERVIEW

GDP GDP – US\$8.1 billion (2019); GDP growth – 7.5% (2019); GDP per capita – US\$876.7 (2019). (Source: TAJSTAT 2020).

Inflation rate – 8.0% (2019); Remittances – US\$2.7 billion (2019); External Debt – US\$2.8 billion (2019).

(Source: TAJSTAT 2020).

POVERTY Population - 9.2 ml. (2019); Poverty rates – 27.4%; (2018); Unemployment rate - 10.92% (2018). (Source: TAJSTAT 2020).

(To present conducted) analysis on the grasping possible impact of using mining sector for economic development of Tajikistan, based on its main export commodity groups: lead ores, zinc ores, antimony ores and cooper ores.

iA			Table of Common Polyatomic long					El	Element categories State of matter at 25 °C								18 Vill
H	2	intertato chilinato Nyclostycke coltrato		C.H.D. 100- 101- 102-	uffication codifiction Operationality	10/ 10/ 10		Afail meta Alkalme-or Transition (Other mit)	orth metalli rvetalli		Gan Lip 13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	H	
Li 6.541	Be]	carthe		100, 00, 00,	arsenite philiphale	AND NO.	2	Hydrogen Semijendi Haloyena Nodën pina Otine semi			5 B 10.811	C	N	0	P F	10 N
Na 22.090	12 Mg 24.305	3 (11B	4 TV8	5 V8	6 VIB	7 Viiß	8	9 VIIIB	10	11 15	12 88	13 Al	14 Si 28.006	P	10 5	17 Cl 33.457	10. A 19.9
19 K	20 Ca 80,078	21 Sc 44.95#	22 Ti 47,667	23 V 30.942	24 Cr 51.998	25 Mn 55.938	26 Fe 33.845	27 Co 38.933	28 Ni 56.693	29 Cu 61.540	30 Zn 65,39	Ga 69,723	32 Ge 72.64	33 As 14.922	Se	Br TRANA	36 K
Rb	Sr ET.62	39 Y 48.906	** Zr	41 Nb 92.905	42 Mo 95,94	Tc	44 Ru 101.07	45 Rh 102.91	46 Pd 106,42	47 Ag 167.87	48 Cd 112.41	49 1 In 134.82	Sn Sn	SD Sb UIDE	52 Te	53	X
Cs	56 Ba	N	72 Hf 176,49 (1.8.0 m)	73 Ta 180.93	74 W 183.84	75 Re 186.21		192,22	78 Pt 153.08	79 1 Au 196.97	80 Hg 200.59	81 TI 254,38	82 Pb 207.3	Bi	84 Po	85 At	86 R (22
Fr (223)	88 Ra (236)	Ń	104 Rf (2611	103 Db (267)	106 Sg (266)	107 Bh 13641	108 HS (277)	109 Mt (266)	110 Uun (281)	Uuu (272)	Uub (2851	Uut Juit	114 Uuq	Uup	Uuh Izen	Uus	110 Uz 729
ncted Dala	fatton State		57	58 Ce	59 Pr 140.91	Nd	et Pm	62 Sm 150.36	63 Eu 151,96	Gd	65 Tb	Dy	67 Ho	68 Er 167,36	Tm 100.91	70 Yb	71 L
- kode	Sc ed.956 3457		89 Ac	90 Th	and the second second	92 U 235.03	93 Np	94 Pu (241)	95 Am	en Cm	10544	98 Cf	99 Es	100 Fm (257)	Md	102 No	103 L

Tajikistan is extremely rich and blessed with natural resources

MINING SECTOR OVERVIEW

It is estimated that more than 600 deposits and 800 potential sites for excavation lies in Tajikistan;

Iron, zinc, antimony, uranium, coal, oil, natural gas, mercury, gold, silver, tin, salt, talc, precious/semiprecious stones, building materials and hydropower potential etc.;

Tajikistan has issued 316 licenses for subsoil use and 66 of these are for exploration of 250 extractive area (EITI of Tajikistan 2017).

The Place of Mining Industry in the Economy of Tajikistan

- ✤ Mining Sector (MS) growth 2% (2018);
- Portion in the Budget revenues is 4.2% (2018);
- ✤ MS employment 12% or 10.2 thousand people (2018).

(Source: TAJSTAT 2020).

- Contribution of the mining industry in the economy is 23.8% (2018);
- In 2018 was registered 249 extractive enterprises. (Source: TAJSTAT 2020, EITI-Tajikistan 2020).

Volume of Industrial Output (million somoni)

Products in Export

CHALLENGES

Legislative - adverse changes in legislation, as a result of which economic activity in the state becomes impossible;

Bad Governance -associated with corruption, poor management, as well as abuse of official position by some officials etc.;

Tendency of deindustrialization – that reduces the growth of fixed capital, primarily due to the presence of investments in their formation;

Monetary policies - pursued by the state, and they include: inflation risks, deflation risks and currency risks;

Infrastructure and Communications – poor roads or no road;

Investment - country does not have sufficient investment attraction climate;

Export of raw materials – which reduces to get more benefits;

Environment – does not have strong policy regulations.

LITERATURE REVIEW FRAMEWORK

Natural Resource Management

Why is Natural Resource Management Complex? Beyond the Resource Curse; Dutch Disease; Environmental Issues;

Mining Industry Development

The Economics of the Extractive Industries Sector (Mining Sector)

Policies and Practices; Impact of EI; EITI;

Good Governance and Extractive Industries Good Governance Principles and Indicators Role of the Good Governance on economic and social reforms

METHODOLOGY

- This research primarily uses quantitative analysis that is designed for assessing the impact of Mining Sector on the economic growth with use of an Input-Output Table model;
- Input-output model, developed by Leontief in the late 1930s, it was intended to study the interdependence among the different sectors in any economy (Miller&Blair, 1985);
- Leontief Inverse Matrix:

$$(I - A)^{-1}$$

where, I is an Identity matrix and A is the input coefficient matrix.

14

Quantitative analysis will be carried out using following process:

- Reconstruction of the IOTs from the Available Data Sources of SUTs;
- Estimate of Future Growth of the Mining Sector of Tajikistan
- Assessment of the Impact of the Increased Production of the Mining Sector on the Economy of Tajikistan

METHODOLOGY

It is focused on the *Impact Analysis of the Mining Sector on the Economy of Tajikistan* at the following three levels:

- At Sector Level: Estimation of the *Mining Sector's impact* on Tajikistan economy for the period 2020-2022;
- At Mining Sector's Group of Products Level: Estimation of group of products of the Mining Sector's impact on Tajikistan economy for the period 2020-2022;
- At Corporate Level: Estimation of *Mining Sector's enterprises such as LLC TALCO Resource and LLC "Tajik-Chinese Mining Company"* impact on the economy for the period 2020-2022.

RESTRICTIONS:

From 1987 Tajikistan did not develop Input-Output Tables (IOTs) as the Soviet Union collapsed;

From 1993 Tajikistan established National Account System under UN standards;

In 2014, Supply Use Tables (SUTs) for the year 2011 was developed with GIZ support;

Development of SUTs discontinued for lack of finance and staff.

		FINAL DEMAND							
		1	2		n	Total	GDP	X Total Output	
				Quadrant	Ι		Quadrant II		
	1	<i>x</i> ₁₁	<i>x</i> ₁₂		x_{1n}	$\sum x_{1j}$	<i>Y</i> ₁	X1	
cers	2	<i>x</i> ₂₁	<i>x</i> ₂₂		<i>x</i> _{2<i>n</i>}	$\sum x_{2j}$	Y ₂	X1	
Producers									
Ā	n	<i>x</i> _{n1}	<i>x</i> _{<i>n</i>2}		x _{nn}	$\sum x_{nj}$	Y _n	X _n	
	Total	$\sum x_i$	1	$\sum x_{i2} \qquad \cdots \qquad \cdots$	$\sum x_{in}$	$\sum_{i=1}^n \sum_{j=1}^n x_{ij}$			
À	Value added	Qu			III		Quadrant IV		
Primary Inputs		V ₁	V ₂		V_n	$\mathbf{V} = \sum V_j$	$\sum V_j = \sum Y_i$		
	Total Inputs					_			
	Total Inputs	X ₁	X ₂		X _n	$\boldsymbol{X} = \sum \boldsymbol{X}_j$		$\sum X_j = \sum X_i$	

Calculations have been made that on firming the consistency of the balance of 58 industries with the 6 aggregated industries:

First - sector includes the all enterprises from *Agriculture Sector*;

Second- sector includes all enterprises of Mining Sector;

Third – sector includes all enterprises of *Industry Sector* including processing sector;

Fourth - sector includes all enterprises of *Construction Sector*;

Fifth – sector includes all enterprises of *Service Sector* that includes transportation, communication enterprises and utilities services;

Sixth –sector includes all enterprises of *Financial Sector* that includes banks, insurance companies, stock, trust companies and real estate companies.

Consolidated Res Mining Sector on			-		omoni)		
Sample Period				2020			
Sectors	Agriculture Sector (1)	Mining Sector (2)	Industry Sector (3)	Construction Sector (4)	Service Sector (5)	Financial Sector (6)	Total
Gross Output Before Simulation*	20,731,494	2,403,733	17,626,911	7,957,209	37,137,251	5,271,698	91,128,300
Increased Production Demand in <i>M</i>	0	7,879,400	0	0	0	0	<mark>7,879,400</mark> _
Gross Output after Simulation	20,816,885	11,520,359	18,179,911	8,031,591	38,002,127	5,340,349	101,891,225
Impact on Economy **	85,390.7	9,116,626	552,999.8	74,381.5	864,876	68650.6	10,762,925
Impact %***							1.36
Sample Period				2021			
Gross Output before Simulation	20,731,494	2,403,733	17,626,911	7,957,209	37,137,251	5,271,698	91,128,300
Increased Production Demand in <i>M</i>		9,384,462					<mark>9,384,462</mark> _
Gross Output after Simulation	20,833,196	13,261,747	18,285,541	8,045,798	38,167,329	5,353,462	103,947,075
Impact on Economy Impact %	101,701.4	10,858,013	658,629.6	88,589.2	1,030,078	81,763.7	12,818,776
Sample Period				2022			1.36
Gross Output before Simulation	20,731,494	2,403,733	17,626,911	7,957,209	37,137,251	5,271,698	91,128,300
Increased Production Demand in <i>M</i>		10,716,200					10,716,200
Gross Output after Simulation	20,847,628	14,802,595	18,379,006	8,058,370	38,313,506	5,365,065	105,766,173
Impact on Economy	116,133.7	12,398,861	752,094.9	101,160.8	1,176,255.2	93,366.7	14,637,873
Impact %							1.36

RESULTS of Simulation Model for Sector Level (1)

- This means that annually increasing demand of production of Mining Sector had promising *positive impacts*: direct (0.24%), indirect (1.12%), and total effects (1.36%) on the economy of Tajikistan;
- Which makes us believe that an increase in the production demand from the *Mining Sector* will contribute *a profound and significant impact on the economy growth* of Tajikistan.

Consolidated Results of Simulation Model for Mining Sector's Group of Products Level. Impact of the Mining
Sector's Products on Tajikistan Economy for the Period 2020-2022 (thousand somoni)

Sample Period			2020	
Mining Sector's Group of	Coal and Lignite,	Crude Petroleum and	Metal Ores (13)	Other Mining and Quarrying
Products	Peat (10)	Natural Gas (11)		Products (14)
Total Gross Output Before				
Simulation*	91,128,300	91,128,300	91,128,300	91,128,300
Increased Production				
Demand in <i>GP</i>	429,000	800,100	7,141,100	229,200
Total Gross Output after				
Simulation	91,910,935	91,278,138.8	103,264,135	91,510,262
Impact on Economy**	782,635.3	149,839.1	12,135,836	381,962.9
Impact %**	1.82	1.87	<mark>1.69</mark>	<u>1.66</u>
Sample Period			2021	
Total Gross Output				
before Simulation	91,128,300	91,128,300	91,128,300	91,128,300
Increased Production				
Demand in <i>GP</i>	711,985.5	130,299	8,276,535	265,642.8
Total Gross Output after				
Simulation	92,427,192.5	91,372,043	105,193,734	91,570,994.6
Impact on Economy	1,298,893	243,743.8	14,065,434	442,694.9
Impact %	1.82	1.87	<mark>1.69</mark>	<mark>1.66</mark>
Sample Period	-		2022	
Total Gross Output				
before Simulation	91,128,300	91,128,300	91,128,300	91,128,300
Increased Production				
Demand in <i>GP</i>	729,351	137,691	9,542,845	306,286.2
Total Gross Output after				
Simulation	9,245,887	91,385,871.4	107,345,746	91,638,727
Impact on Economy	1,330,573	257,571.7	16,217,446	510,427.3
Impact %	1.82	1.87	<u>1.69</u>	1.66

RESULTS of Simulation Model for Mining Sector's Group of Products Level (2)

Simulation Models reached the following *impacts* on the economy:

- Coal and Lignite, Peat (10) products obtained high economic impact by 1.82%;
- Crude Petroleum and Natural Gas (11) products gained the highest and most promising economic impact by 1.87%;
- Metal Ores (13) products reached positive economic impact by 1.69%;
- Other Mining and Quarrying Products (14) got also positive economic impact by 1.66%.

Through the obtained results it can be understand that, even without an increase of demand, production of Crude Petroleum and Natural Gas (11) products obtained <u>the</u> <u>highest promising impact by 1.87% on the economy</u> of Tajikistan.

Followed by Coal and Lignite, Peat (10) products that also obtained <u>the high economic</u> <u>impact by 1.82%</u> among of other products of the Mining Sector.

CONCLUSION

Conducted analysis suggests that if Tajikistan wishes to accomplish the national objectives regarding the industrialization and economic development that were defined in <u>National Development Strategy -2030</u>, the *radical and effective policies on investment, industry development, government contribution concerning Mining Sector development have to be adopted.*

Otherwise, Tajikistan will remain far behind on the path of its development goals and the economic potential of Mining Sector, as it was defined that the given industry is *highly promising*.

25

IMPORTANT POLICIES FOR MINING SECTOR OF TAJIKISTAN

Stimulating Economic Growth (Sovereign Wealth Fund; Infrastructure; Corporate Social Responsibilities; Industrialization);

Fiscal Policy - Taxation (Profit tax; Royalties; Resource Rents; Bonuses; VAT);

Introducing Good Governance that will strengthen Extractive Industries Transparency Initiatives Standards and support EITI of Tajikistan:

- Transparency Promotion Struggle Against Corruption (Data disclosure; Audit; Evaluation);
- Promotion of Accountability (Disclosure of distribution and allocation of Rents/Revenues data);

Environment Policies (Waste management; Standards to manage the negative impacts on biodiversity, Recycling).

REFFERENCES

ADB. (2016). Tajikistan Promoting Export Diversification And Growth. Manila: Asian Development Bank. Agere, S. (2000). Promoting Good Governance: Principles, Practices and Perspectives. Lundon: Commonwealth Secretariat. Alexeev, Michael and Conrad, Robert F. (2009, September). The Natural Resource Curse and Economic Brunnschweiler, Christa N. and Bulte, Erwin H., (2006). The Resource Curse Revisited and Revised: A Tale of Paradoxes and Red Herrings . CER-ETH - Center of Economic Research. Retrieved from SSRN: https://ssrn.com/abstract=959149 or http://dx.doi.org/10.2139/ssrn.959149 Sigam & Garcia. (2012). Extractive Industries: Optimizing Value Retention in Host Countries. United Nations Conference on Tradeand Development (pp. 1-54). New York and Geneva: UNCTAD. David Williams and Tom Young. (2010). Governance, the World Bank and Liberal Theory. In B. B. Boas, International Development: From Structural Adjustment to Good Governance (p. 385). London: SAGE Publication Ltd. Davis, G. (2009). Mining, Society, and a Sustainable World. In ed. Davis, Extractive economies, growth, and the poor (pp. 37-60). Berlin : Springer Berlin Heidelberg. Djanobilov, M. (2015). Head Department of Geology under the Government of the Republic of Tajikistan. Retrieved from ead Department of Geology under the Government of the Republic of Tajikistan. EITI-Tajikistan. (2015). The 1st National Report on Implementation of the Extractive Industries Transparency Initiative Activities in the Republic of Tajikistan for 2014. Dushanbe: Tajikistan EITI. Graham et al. (2005). The Resource Curse. A United Nations Sustainable Development Journal. Halland, et al. (2015). The Extractive Industries Sector: Essential for Economists, Public Finance Professionals and Policy Makers. Washington D.C.: International Bank for Reconstruction and Development/ The World Bank. Eromenko& Saidahmadzoda. (2015). Economic Review Tajikistan. Dushanbe: DeutscheGesellschaftfür Internationale Zusammenarbeit (GIZ) GmbH. Sachs & Warner. (1995). Natural Resource Abundance and Economic Growth. NBER Working Papers. Oluwakemi, A. (2013). Governance in the Nigerian Extractive Industries: From a Human Development Perspective. Chicago: Loyola University Chicago. Masouman, A. (2014). Economic forecasting, impact analysis and regional planning with a focus on the Illawarra. School of Accounting, Economic and Finance. University of Wollongong. MFA of Tajikistan. (2018). Ministry of Foreign Affairs of the Republic of Tajikistan. Retrieved from General Information: http://mfa.tj/?l=en&cat=19&art=224 Miller, R., & Blair, P. (1985). Input-output analysis: foundations and. New Jersey: Prentice-Hall. NBT. (2019). National Bank of Tajikistan. Retrieved from Real Sector: http://www.nbt.tj/en/statistics/real_sector.php NRGI. (2015). Natural Resource Governance Institute. Retrieved from NRGI Primers: A Series About Resource Governance: https://resourcegovernance.org/analysis-tools/publications/nrgi-primers-series-about-resource-governance Rey, S. (2000). Integrated Regional Econometric +Input-Output Modelling: Issues and Opportunities. Papers in Regional Science, 271-292.

Shape your world

THANK YOU FOR YOUR KIND ATTENTION AND CONTRIBUTIONS