
FORMAL GROUPS AND RELATIVE KUMMER THEORY

RINTARO KOZUMA

Abstract. We consider “relative” Kummer theory via formal groups, which gives
refinement of Kummer theory over local fields.

1. Introduction

Kummer map of group cohomology is an injection

δ : AG/ϕ(AG) −→ H1(G, kerϕ),

where G is a profinite group, A is a G-module (with continuous action) and ϕ ∈
EndG(A) is surjective. Let G be a Galois group Gal(K/K) of a fixed separable closure

K over a perfect field K. In the case where A is the multiplicative group K
∗
and ϕ is

the multiplication by n map, the map δ is well-known as classical Kummer theory. In
the case where A is the group E(K) of rational points on an elliptic curve E defined
over a field K and ϕ is an isogeny, the map δ gives rise to Kummer (descent) theory
for elliptic curves. In the case where A is a group of units of a ring of integers in a
field K and ϕ is the multiplication by n map, the map δ induces Kummer (descent)
theory for groups of units. For each case, if K is a local field then AG has a subgroup
isomorphic to a formal group over the ring OK of integers of K. In the present paper,
we consider in general the case where A is a one-dimensional commutative formal
group F over the ring OK of integers of a local field K, G = Gal(K/K) and ϕ is an
isogeny over OK . This enables us to uniformly consider Kummer theory for certain
subgroup of various A. Especially we focus on the system {(F/ϕm(F))i}i,m varying
i, m through positive integers, where (F/ϕm(F))i is the i-th module associated with
the filtration of F (§4). The group structures of K∗, E(K) and O∗

K over local fields
are well-known (the case of elliptic curves is originally due to E. Lutz [7]). However,
the algebraic connection among {(F/ϕm(F))i}i,m seems to have been not inquired
in the literature. Here we give an answer, which provides precise information of the
layer structure of the system {(F/ϕm(F))i ↪→ H1(G, kerϕm))}i,m relatively and has
an important application to Selmer groups ([4]).

This paper is organized as follows: Our main result is Theorem 4.1 in §4. We first
set up notation used throughout the paper in §2. In §3, the valuation of division
points on formal groups is determined, which plays an essential role in the proof of
the main result.
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2. General setting

Let K be a finite extension over the p-adic number field Qp, OK the ring of integers
of K with maximal ideal MK generated by a uniformizer πK , kK = OK/MK the
residue field, and let vK : K → Q ∪ {∞} be a normalized valuation on an algebraic
closure K so that vK(πK) = 1.

Let F denote a one-dimensional commutative formal group over OK ([2]). For
any finite extension L over K, we can make ML into an abelian group by the law
x +F y := F(x, y), x, y ∈ ML. We denote this group by F(L). Since F(X, Y ) ≡
X + Y (mod deg 2), the filtration ML ⊃ M2

L ⊃ M3
L · · · induces the filtration F(L) ⊃

F(L)2 ⊃ F(L)3 · · · , and there are isomorphisms F(L)i/F(L)i+1 ≃ Mi
L/M

i+1
L ≃ kL.

If a ∈ Q (a > 0) then F(L)a denotes F(L)⌈a⌉, where ⌈a⌉ is the smallest integer ≥ a.
We will frequently use the identification F(L) ≃ ML as underlying sets, and regard
F(K) as the inductive limit lim−→F(L) of all finite extensions L/K . We often write F
instead of F(K) for simplicity.

Let ϕ denote an isogeny F → G over OK , where G/OK
is a one-dimensional commu-

tative formal group; that is, a non-zero formal power series ϕ(X) = a1X+a2X
2+· · · ∈

OK [[X]] satisfying ϕ(F(X, Y )) = G(ϕ(X), ϕ(Y )). If ϕ(X) /∈ MK [[x]] then there exists

a non-negative integer h satisfying ϕ(X) ≡ aphX
ph +(higher degree term) (mod MK)

with aph ∈ O∗
K ([5], [2]-I-§3). We denote the integer h by ht(ϕ), which is called the

height of ϕ, and let ht(ϕ) = ∞ in the case where ϕ(X) ∈ MK [[x]] (but we do not treat
this case here). Let

c(ϕ) :=
dϕ

dX
(0) (= a1),

which plays an important role in the theory of one-dimensional commutative formal
groups ([2]-IV-§1, [5]).

3. The valuation of division points on formal groups

In this section, we determine the valuation of the inverse image ϕ−1(G(K)) in F(K)
for an isogeny ϕ whose kernel has exponent p, or equivalently kerϕ ⊂ ker [p], where
[p] ∈ EndOK

(F) denotes the multiplication by p map. We first show the fundamental
properties for height 1 isogenies (§3.1), and use these properties to determine the
valuation of the inverse image of isogeny of arbitrary finite height (§3.2). In §3.3, we
focus on endomorphisms ϕn ∈ EndOK

(F), where ϕ ∈ EndOK
(F) and n is any positive

integer. Note that the set ϕ−1(y) is non-empty for any y ∈ G(K) because the map
ϕ : F(K) → G(K) is surjective ([2]-IV-§2, Theorem 1), and kerϕ denotes ϕ−1(0) in
F(K).

For a descending filtration M =M0 ⊇M1 ⊇ · · · ⊇M i ⊇ · · · of modules, let

Q(M)i :=M i/M i+1,

which is the i-th factor module of this filtration. If a ∈ Q (a > 0) then Q(M)a

denotes Q(M)⌈a⌉. Needless to say, a filtration of a module M is not always unique,
but throughout this paper, we will consider only one filtration for each module M .
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3.1. The case ht(ϕ) = 1. In this subsection, we assume that ht(ϕ) = 1. In this
case, kerϕ ≃ Z/pZ by Theorem 1 in [2]-IV-§2. Let tL := vL(c(ϕ))/(p− 1), and let CL

denote the subgroup of F(L)/F(L)tL+1 generated by kerϕ ∩ F(L); namely,

CL := (kerϕ ∩ F(L))/F(L)tL+1.

Our starting point is the results of V. G. Berkovič [1]. We quote the following two
lemmas from the paper [1], which are often used in the present paper.

Lemma 3.1 (Lemma 2.1.1 in [1]). If a1 | p then a1 | ai for any positive integer i such
that p ∤ i.

Lemma 3.2 (Lemma 1.1.2 in [1]). If a non-zero element x ∈ F(L) satisfies ϕ(x) = 0,
then vL(x) = tL. Especially the valuation vL(x) is independent of the choice of x ∈
kerϕ \ {0}.

From Lemma 3.2, it turns out that CL is a subgroup of Q(F(L))tL , and CL = 0 if
tL /∈ Z. For the proof of Lemma 3.4, we shall need the following lemma.

Lemma 3.3. If tL ∈ Z then there is a Galois equivariant bijection

kerϕ \ {0} ∼−→
{
ξ ∈ kL | apξp−1 + u ≡ 0 (mod πL)

}
x 7−→ π−tL

L x (mod πL),

where u := π
−(p−1)tL
L a1 ∈ O∗

L. In particular, if L(x) ̸= L then L(x)/L is an unramified
extension of degree p− 1 for each x ∈ kerϕ \ {0}.

Proof. Let S :=
{
ξ ∈ kL | apξp−1 + u ≡ 0 (mod πL)

}
. Take any x ∈ kerϕ \ {0}. By

Lemma 3.2, we can write a1 = π
(p−1)tL
L u, x = πtLL ξ, where u ∈ O∗

L and ξ ∈ O∗
L
. Then

ϕ(x) = a1(π
tL
L ξ) + · · ·+ ap(π

tL
L ξ)

p + · · ·

≡ πptLL ξ(apξ
p−1 + u) (mod πptL+1

L )

≡ 0 (mod πptL+1
L ),

which leads to the equation apξ
p−1 + u ≡ 0 (mod πL). Here apX

p−1 + u ∈ OL[X]
is separable. Thus, the map ι : kerϕ \ {0} → S is well-defined. Applying Hensel’s
lemma to the equation ϕ(X) = 0, we see that ι is surjective, and hence injective by
#kerϕ = #S = p− 1. If ξ /∈ L then, by Hensel’s lemma, ξ (mod πL) /∈ kL. Since the
multiplication by p−1 map on k∗L has kernel isomorphic to Z/(p−1)Z, the polynomial
apX

p−1+u ∈ OL[X] must be irreducible. Hence L(x)/L is an unramified extension of
degree p− 1. □

The following lemma gives the valuation of ϕ(x) for any x ∈ F(L).

Lemma 3.4. Let i be any positive integer.

(i) If i < tL then ϕ induces an isomorphism

Q(F(L))i
∼−→ Q(G(L))pi.
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(ii) If i = tL then ϕ induces an exact sequence

0 −→ CL −→ Q(F(L))tL
ϕ−→ Q(G(L))ptL −→ ĈL −→ 0.

Here ĈL = 0 if kerϕ ̸⊂ F(L), or ĈL ≃ Z/pZ if kerϕ ⊂ F(L).

(iii) If i > tL then ϕ(F(L)i) = G(L)(p−1)tL+i.

Especially, for any x ∈ F(L) satisfying x = x+F F(L)tL+1 /∈ CL \ {0},

vL(ϕ(x)) =

{
pvL(x) if vL(x) ≤ tL

(p− 1)tL + vL(x) if vL(x) > tL.

Proof. For any x ∈ F(L)i\F(L)i+1, if i < tL then combining the inequality vL(a1x) >
vL(apx

p) with Lemma 3.1 yields vL(ϕ(x)) = vL(apx
p) = pi, and if i > tL then combin-

ing the inequality vL(a1x) < vL(apx
p) with Lemma 3.1 yields vL(ϕ(x)) = vL(a1x) =

(p−1)tL+ i. Moreover if i = tL then combining the equality vL(a1x) = vL(apx
p) with

Lemma 3.1 yields vL(ϕ(x)) ≥ vL(a1x) = ptL.
(i) From the above observation, the map ϕ induces a well-defined map Q(F(L))i →
Q(G(L))pi, which is injective. Since #Q(F(L))i = #Q(G(L))pi = #kL < ∞, this
map is also surjective.
(ii) The map ϕ induces a well-defined map ϕ : Q(F(L))tL → Q(G(L))ptL , which leads
to the following commutative diagram:

Q(F(L))tL
ϕ−−−−→ Q(G(L))ptLx y

kL
Φ−−−−→ kL,

where the vertical arrows are canonical isomorphisms. It is easy to check that the map

Φ is given by Φ(x) = x(apx
p−1 + u), where u := π

−(p−1)tL
L a1 ∈ O∗

L. If kerϕ ̸⊂ F(L)
then apx

p−1 + u ̸= 0 for any x ∈ kL by Lemma 3.3 and Hensel’s lemma, and hence

kerΦ = 0, kerϕ = 0. This forces cokerϕ = 0 by #Q(F(L))tL = #Q(G(L))ptL =

#kL < ∞. Assume that kerϕ ⊂ F(L). Then, by Lemma 3.3, ap(π
−tL
L x)p−1 + u ≡ 0

(mod πL) for any x ∈ kerϕ\{0}, and so Im [kerΦ → Q(F(L))tL ] (= kerϕ) is generated
by kerϕ. Since kerΦ ≃ Z/pZ, we have [kL : Φ(kL)] = p, which gives cokerϕ ≃ Z/pZ.
(iii) Since ϕ(F(L)i) ⊂ G(L)(p−1)tL+i, F(L)i ≈ G(L)i ≈ Z⊕[L:Qp]

p and [G(L)i : G(L)(p−1)tL+i] =

[M i
L : M

(p−1)tL+i
L ] = p(p−1)tLf , where f is the residue degree of L/Qp

, we have

[G(L)i : ϕ(F(L)i)] = p(p−1)tLf . This implies ϕ(F(L)i) = G(L)(p−1)tL+i. □

The following lemma characterizes the inverse image ϕ−1(y) for any y ∈ G(L). Let
L(x) denote the field of definition for x ∈ F(L).

Lemma 3.5. Let i be any positive integer. For any y ∈ G(L)i \ G(L)i+1, let x be an
element in F(L) such that ϕ(x) = y.

(i) If i < ptL then vL(x) = i/p. Furthermore if p | i then there exists x′ ∈
F(L)i/p \ F(L)i/p+1 such that ϕ(x′) −G y ∈ G(L)i+1. If p ∤ i then L(x)/L is a
totally ramified extension of degree [L(x) : L] = p.
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(ii) If i = ptL then vL(x) = tL (= i/p). Furthermore if tL ∈ Z then L(x)/L is an
unramified extension of degree [L(x) : L] | p. If tL /∈ Z then L(x)/L is a totally
ramified extension of degree [L(x) : L] = p.

(iii) If i > ptL then there exists w ∈ kerϕ∩F(L(x)) so that vL(x+Fw) = i−(p−1)tL
and L(x+F w) = L.

Especially, in the cases (i)(ii), the valuation vL(x) is independent of the choice of
x ∈ ϕ−1(y).

Proof. Let e denote the ramification index of the extension L(x)/L, and let s :=
vL(x)(x). Since ht(ϕ) = 1, by the p-adic Weierstrass preparation theorem ([2]-I-§1,
Theorem 3) and Lemma 3.1, we can write the polynomial ϕ(X)− y ∈ OL[[X]] as

ϕ(X)− y = (b0 + b1X + · · ·+ bp−1X
p−1 +Xp) · u(X)

for some unit u(X) ∈ OL[[X]]∗. Letting X = x yields b0+b1x+ · · ·+bp−1x
p−1+xp = 0.

It thus turns out that the extension degree [L(x) : L] ≤ p.
(i) In Lemma 3.4, replacing L, i by L(x), vL(x)(x) respectively, we can easily deduce
that vL(x)(x) < tL(x), where tL(x) = etL by definition. Thus, again using Lemma 3.4
yields pvL(x)(x) = ei, and hence vL(x) = i/p. Assume that p ∤ i. Since vL(x) = s/e,
we have ei = ps. This gives p | e. Combining the inequality [L(x) : L] ≤ p with
p | e | [L(x) : L], we have [L(x) : L] = e = p. We next assume p | i. Let i0 := i/p ∈ Z.
Write a1 = π

(p−1)tL
L u, y = πiLη, where u, η ∈ O∗

L. Since vL(ap) = 0 and vL(p) > 0,

there exists some z ∈ O∗
L such that apz

p ≡ η (mod π). Let ϵ := ϕ(πi0L z)−G y ∈ G(L).
Then

ϕ(πi0L z) = y +G ϵ

≡ y + ϵ (mod π
i+vL(ϵ)
L ),

ϕ(πi0L z) = a1(π
i0
L z) + · · ·+ ap(π

i0
L z)

p + · · ·

≡ πpi0L (apz
p + π

(p−1)(tL−i0)
L uz) (mod πpi0+1) (by Lemma 3.1)

≡ πiLapz
p (mod πi+1

L )

≡ πiLη (mod πi+1
L ).

We thus have y + ϵ ≡ πiLη (mod πi+1
L ), and so ϵ ≡ 0 (mod πi+1

L ); namely, vL(ϵ) > i.

Let x′ := πi0L z ∈ F(L)i/p\F(L)i/p+1. The element x′ satisfies vL(ϕ(x
′)) = vL(y+G ϵ) =

i and ϕ(x′) −G y = ϵ ∈ G(L)i+1. Therefore x′ is a required element in the statement
of the lemma.
(ii) In Lemma 3.4, replacing L, i by L(x), vL(x)(x) respectively, we can easily deduce
that vL(x)(x) = tL(x), where tL(x) = etL by definition. Thus, vL(x) = tL (= i/p).

Assume that tL ∈ Z. Write a1 = π
(p−1)tL
L u, x = πtLL ξ, y = πiLη, where u, η ∈ O∗

L and
ξ ∈ O∗

L(x). Then

ϕ(x) = a1(π
tL
L ξ) + · · ·+ ap(π

tL
L ξ)

p + · · ·

≡ πptLL (apξ
p + uξ) (mod πptL+1

L )

≡ πiLη (mod πptL+1
L ),
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which leads to the equation apξ
p + uξ ≡ η (mod πL). If x /∈ L then, by Hensel’s

lemma, ξ (mod πL) /∈ kL, and hence L(x)/L is an unramified extension of degree p.
Assume that tL /∈ Z. Since vL(x) = s/e, we have ei = ps. This gives p | e. Combining
the inequality [L(x) : L] ≤ p with p | e | [L(x) : L], we have [L(x) : L] = e = p.
(iii) In Lemma 3.4, replacing L, i by L(x), vL(x)(x) respectively, we can easily deduce
that vL(x)(x) ≥ tL(x) and x ∈ CL(x). Then, by the definition of CL(x), there exists
w ∈ kerϕ ∩ F(L(x)) so that vL(x)(x +F w) > tL(x). Again using Lemma 3.4 yields

ϕ(F(L(x))j−(p−1)tL(x)) = G(L(x))j for any integer j ≥ ei (> ptL(x)), which implies
vL(x +F w) = i − (p − 1)tL. Assume that xw := x +F w /∈ F(L). There exists
an embedding σ : L(xw) → L fixing any a ∈ L such that xσw ̸= xw. Let z :=
xσw −F xw. Then ϕ(z) = 0, z ̸= 0, and hence vL(z) = tL from Lemma 3.2. Since
vL(xw)− vL(z) = i− ptL > 0, we have vL(x

σ
w) = vL(xw +F z) = vL(z) = tL. However

i − (p − 1)tL = vL(xw) = vL(x
σ
w) = tL; that is, i = ptL. This is a contradiction.

Therefore xw ∈ F(L). □

3.2. The case ht(ϕ) = h. From now on, we consider the arbitrary height cases.
Let h := ht(ϕ) be any positive integer. We assume that the exponent of kerϕ is p.
Recall from Theorem 1 in [2]-IV-§2 that kerϕ is an Fp-vector space of dimension h.

Lemma 3.6. Let F ′ be any one-dimensional commutative formal group over OL. For
any finite subgroup C = ⟨η1⟩ ⊕ ⟨η2⟩ ⊕ · · · ⊕ ⟨ηk⟩ ⊂ F ′(L) isomorphic to (Z/pZ)⊕k

(i.e. an Fp-vector space of dimension k), where k is an integer (≥ 1), there exist a
one-dimensional commutative formal group F ′′ and a height 1 isogeny ψ : F ′ → F ′′,
both defined over OL satisfying the conditions:

(i) kerψ = ⟨η0⟩ ≃ Z/pZ, where η0 ∈ C and vL(η0) = max{vL(η) | η ∈ C \ {0}}.
(ii) ψ(C) ≃ (Z/pZ)⊕(k−1).
(iii) vL(ψ(η)) = pvL(η) ≤ pvL(η0) for any η ∈ C \ kerψ.
(iv) For any isogeny Ψ : F ′ → F ′′′ over OL with kerΨ ⊃ kerψ, there exists unique

isogeny ψ′ : F ′′ → F ′′′ over OL so that Ψ = ψ′ ◦ ψ.

Proof. Take η0 ∈ C so that vL(η0) = max{vL(η) | η ∈ C \ {0}}. By the result
[6] of Lubin, there exists a height 1 isogeny ψ : F ′ → F ′′ over OL whose kernel is
⟨η0⟩ ≃ Z/pZ, and the isogeny ψ has the universal property (iv). For any η ∈ C \kerψ,
if vL(η) < vL(η0) then, by Lemma 3.2, 3.4 we have vL(ψ(η)) = pvL(η) < pvL(η0). If
vL(η) = vL(η0) then, since vL(η−F ′ η′0) = vL(η0) for any η

′
0 ∈ kerψ, using Lemma 3.2,

3.4 yields vL(ψ(η)) = pvL(η0) = pvL(η). □

Let L′ := L(kerϕ). Repeated application of Lemma 3.6 to kerϕ ⊂ F(L′) enables
us to decompose ϕ into the following height 1 isogenies defined over OL′ :

ϕi : Fi−1 −→ Fi (1 ≤ i ≤ h).

Here F0 := F , Fh := G, ϕ = ϕh ◦ · · · ◦ ϕ1 and vL(ηi+1) ≤ pvL(ηi), where kerϕi =
⟨ηi⟩ ≃ Z/pZ for some ηi ∈ Fi−1(L

′). Since kerϕi ⊂ ϕi−1 ◦ · · · ◦ ϕ1(kerϕ), we can find
some Fp-basis {w1, w2, · · · , wh} of kerϕ so that

kerϕi = ⟨ϕi−1 ◦ · · · ◦ ϕ1(wi)⟩ (= ⟨ηi⟩).
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Let t
(i)
L := vL(c(ϕi))/(p− 1). From Lemma 3.2, vL(ηi) = vL(ϕi−1 ◦ · · · ◦ ϕ1(wi)) = t

(i)
L ,

and hence t
(i+1)
L ≤ pt

(i)
L .

The following lemma is a generalization of Lemma 3.2 to arbitrary height cases.

Lemma 3.7. If x ∈ F(L) satisfies ϕi ◦ · · · ◦ ϕ1(x) = 0, ϕi−1 ◦ · · · ◦ ϕ1(x) ̸= 0 for

some positive integer i (≤ h), then vL(x) = t
(i)
L /pi−1. Especially the valuation vL(x)

is independent of the choice of x ∈ ker (ϕi ◦ · · · ◦ ϕ1) \ ker (ϕi−1 ◦ · · · ◦ ϕ1), and so

vL(wi) = t
(i)
L /pi−1, vL(wi+1) ≤ vL(wi).

Proof. Let us show vL(ϕi−j ◦· · ·◦ϕ1(x)) = t
(i)
L /pj−1 for any positive integer j (≤ i). By

induction. The case j = 1 follows directly from Lemma 3.2. Assume that this holds

for j − 1. Then vL(ϕi−(j−1) ◦ · · · ◦ ϕ1(x)) = t
(i)
L /pj−2 ≤ pt

(i−j+1)
L . It thus follows from

Lemma 3.5 that vL(ϕi−j ◦ · · · ◦ ϕ1(x)) = t
(i)
L /pj−1, which gives the desired conclusion.

The latter statement immediately follows from this. □

From Lemma 3.7, we have the decreasing sequence

vL(w1) ≥ vL(w2) ≥ vL(w3) ≥ · · · ≥ vL(wh).

For any positive integer m (≤ h), there exist unique integers m0, m1 (1 ≤ m0 ≤ m ≤
m1 ≤ h) so that

vL(wm0−1) > vL(wm0) = · · · = vL(wm) = · · · = vL(wm1) > vL(wm1+1).

Let C
(m)
L denote the subgroup of Q(F(L))vL(wm) generated by the subgroup

⟨wm0 , wm0+1, · · · , wm1⟩ ∩ F(L) ⊂ F(L)vL(wm);

namely,

C
(m)
L := (⟨wi | vL(wi) = vL(wm)⟩ ∩ F(L))/F(L)vL(wm)+1.

Note that C
(m)
L = 0 if vL(wm) /∈ Z, and for the case h = 1 this definition is equivalent

to the definition for CL in §3.1.

Lemma 3.8. For any finite extensionM/L, let ι : Q(F(L))vL(wm) → Q(F(M))vM (wm)

be a canonical embedding. IfM/L is a Galois extension then (Q(F(M))vM (wm))Gal(M/L) =

Im ι and ι−1(C
(m)
M ) = C

(m)
L .

Proof. There is a commutative diagram

Q(F(M))vM (wm) ∼−−−−→ kM

ι

x x
Q(F(L))vL(wm) ∼−−−−→ kL,

where the vertical arrows are canonical embeddings and Q(F(M))vM (wm) ≃ kM as

Gal(M/L)-modules. We thus have (Q(F(M))vM (wm))Gal(M/L) = Im ι, by k
Gal(kM/kL)
M ≃

kL. Since C
(m)
M is a Gal(M/L)-submodule of Q(F(M))vM (wm), we see that (C

(m)
M )Gal(M/L) ⊂

Im ι, which implies (C
(m)
M )Gal(M/L) ⊂ ι(C

(m)
L )?. By definition, the inverse inclusion
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(C
(m)
M )Gal(M/L) ⊃ ι(C

(m)
L ) holds clearly. Therefore (C

(m)
M )Gal(M/L) = ι(C

(m)
L ), and

hence ι−1(C
(m)
M ) = C

(m)
L ?. □

The following proposition gives the valuation of ϕ(x) for any x ∈ F(L). Let

T
(m)
L :=


h∑

l=m+1

t
(l)
L (0 ≤ m < h)

0 (m = h).

Proposition 3.9. Let i be any positive integer.

(i) If i < vL(wh) then ϕ induces an isomorphism

Q(F(L))i
∼−→ Q(G(L))phi.

(ii) If vL(wm+1) < i < vL(wm) for some integer m (1 ≤ m < h) then ϕ induces an
isomorphism

Q(F(L))i
∼−→ Q(G(L))(p−1)T

(m)
L +pmi.

(iii) If i = vL(wm) for some integer m (1 ≤ m ≤ h) then ϕ induces an exact
sequence

0 −→ C
(m)
L −→ Q(F(L))i

ϕ−→ Q(G(L))(p−1)T
(m)
L +pt

(m)
L −→ ĈL

(m)
−→ 0.

Here ĈL
(m)

is an Fp-vector space isomorphic to C
(m)
L .

(iv) If i > vL(w1) then ϕ(F(L)i) = G(L)(p−1)T
(0)
L +i.

Especially, for any x ∈ F(L) satisfying x /∈ C
(m)
L \{0} for every integer m (1 ≤ m ≤ h),

vL(ϕ(x)) =


phvL(x) if vL(x) ≤ vL(wh)

(p− 1)T
(m)
L + pmvL(x) if vL(wm+1) < vL(x) ≤ vL(wm) (1 ≤ m < h)

(p− 1)T
(0)
L + vL(x) if vL(x) ≥ vL(w1).

Proof. We begin by proving the proposition over L′. Let (i)′ · · · (iv)′ denote the state-
ment of the theorem over L′ for (i)· · · (iv), respectively. First of all, we recall from

Lemma 3.7 that vL′(wl) = t
(l)
L′ /pl−1 for each positive integer l (≤ h).

(i)′ Since pl−1i < t
(h)
L′ /ph−l ≤ t

(l)
L′ for any positive integer l (≤ h), repeated application

of Lemma 3.4 yields the statement for this case.

(ii)′ Since pl−1i < t
(m)
L′ /pm−l ≤ t

(l)
L′ for any positive integer l (≤ m), repeated applica-

tion of Lemma 3.4 yields the isomorphism ϕm ◦ · · · ◦ ϕ1 : Q(F(L′))i ≃ Q(Fm(L′))p
mi.

Moreover, since (p − 1)(t
(m+1)
L′ + · · · + t

(l)
L′ ) + pmi > t

(l+1)
L′ for any integer l (m ≤

l < h), repeated application of Lemma 3.4 yields the isomorphism ϕh ◦ · · · ◦ ϕm+1 :

Q(Fm(L′))p
mi ≃ Q(Fh(L

′))(p−1)T
(m)

L′ +pmi. The statement now follows from ϕ =
ϕh ◦ · · · ◦ ϕ1.
(iii)′ Let m0, m1 be integers so that 1 ≤ m0 ≤ m ≤ m1 ≤ h and vL(wm0−1) >
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vL(wm0) = vL(wm0+1) = · · · = vL(wm) = · · · = vL(wm1) > vL(wm1+1). From
Lemma 3.7, we have

pl−1i


< t

(l)
L′ if 1 ≤ l < m0

= t
(l)
L′ if m0 ≤ l ≤ m1

> t
(l)
L′ if m1 < l ≤ h.

Combining this with repeated application of Lemma 3.4 yields

ϕm0−1 ◦ · · · ◦ ϕ1 : Q(F(L′))i
∼−→ Q(Fm0−1(L

′))p
m0−1i,

0 −→ ϕm0−1 ◦ · · · ◦ ϕ1(C(m)
L′ ) −→ Q(Fm0−1(L

′))p
m0−1i ϕm1◦···◦ϕm0−→ Q(Fm1(L

′))p
m1 i

−→ coker (ϕm1 ◦ · · · ◦ ϕm0) −→ 0 (exact sequence).

Moreover, since (p−1)(t
(m1+1)
L′ +· · ·+t(l)L′ )+pm1i > t

(l+1)
L′ for any integer l (m1 ≤ l < h),

repeated application of Lemma 3.4 yields

ϕh ◦ · · · ◦ ϕm1+1 : Q(Fm1(L
′))p

m1 i ∼−→ Q(Fh(L
′))(p−1)T

(m1)

L′ +pm1 i,

where

(p− 1)

h∑
l=m1+1

t
(l)
L′ + pm1i = (p− 1)

h∑
l=m+1

t
(l)
L′ + pmi

by i = vL(wm) = · · · = vL(wm1). The statement now follows from ϕ = ϕh ◦ · · · ◦ ϕ1.
(iv)′ Since (p − 1)(t

(1)
L′ + · · · + t

(l)
L′ ) + i > t

(l+1)
L′ for any integer l (0 ≤ l < h), repeated

application of Lemma 3.4 yields the statement for this case.

We are now ready to prove the proposition over L. Let e′ be the ramification index
of L′

/L.

(i) Since e′i < t
(h)
L′ /ph−1, using (i)′ yields the following diagram:

Q(F(L′))e
′i ϕ−−−−→ Q(G(L′))p

he′ix x
Q(F(L))i Q(G(L))phi,

where the vertical arrows are canonical embeddings. Then it is easily seen that

Im [Q(F(L))i ↪→ Q(F(L′))e
′i ϕ−→ Q(G(L′))p

he′i] ⊂ Im [Q(G(L))phi ↪→ Q(G(L′))p
he′i],

which implies the map ϕ : Q(F(L))i → Q(G(L))phi is well-defined and injective. Com-

bining this with #Q(F(L))i = #Q(G(L))phi = #kL < ∞, the map ϕ : Q(F(L))i →
Q(G(L))phi must be an isomorphism.

(ii) This follows by the same method as in the proof of (i). Since t
(m+1)
L′ /pm < e′i <

t
(m)
L′ /pm−1, using (ii)′ yields the following diagram:

Q(F(L′))e
′i ϕ−−−−→ Q(G(L′))(p−1)T

(m)

L′ +pme′ix x
Q(F(L))i Q(G(L))(p−1)T

(m)
L +pmi,

9



where the vertical arrows are canonical embeddings. Then it is easily seen that

Im [Q(F(L))i ↪→ Q(F(L′))e
′i ϕ−→ Q(G(L′))(p−1)T

(m)

L′ +pme′i]

⊂ Im [Q(G(L))(p−1)T
(m)
L +pmi ↪→ Q(G(L′))(p−1)T

(m)

L′ +pme′i],

which implies the map ϕ : Q(F(L))i → Q(G(L))(p−1)T
(m)
L +pmi is well-defined and

injective. Combining this with #Q(F(L))i = #Q(G(L))(p−1)T
(m)
L +pmi = #kL < ∞,

the map ϕ : Q(F(L))i → Q(G(L))(p−1)T
(m)
L +pmi must be an isomorphism.

(iii) Since e′i = t
(m)
L′ /pm−1, using (iii)′ yields the following diagram:

Q(F(L′))e
′i ϕ−−−−→ Q(G(L′))(p−1)T

(m)

L′ +pt
(m)

L′

ι

x x
Q(F(L))i Q(G(L))(p−1)T

(m)
L +pt

(m)
L ,

where the vertical arrows are canonical embeddings. Then it is easily seen that

Im [Q(F(L))i ↪→ Q(F(L′))e
′i ϕ−→ Q(G(L′))(p−1)T

(m)

L′ +pt
(m)

L′ ]

⊂ Im [Q(G(L))(p−1)T
(m)
L +pt

(m)
L ↪→ Q(G(L′))(p−1)T

(m)

L′ +pt
(m)

L′ ],

which implies the map ϕ : Q(F(L))i → Q(G(L))(p−1)T
(m)
L +pt

(m)
L is well-defined. More-

over, we have

ker [Q(F(L))i
ϕ−→Q(G(L))(p−1)T

(m)
L +pt

(m)
L ]

= ι−1
(
ker [Q(F(L′))e

′t ϕ−→ Q(G(L′))p
he′t]

)
= ι−1(C

(m)
L′ )

= C
(m)
L . (by Lemma ???)

Thus

0 −→ C
(m)
L −→ Q(F(L))i

ϕ−→ Q(G(L))(p−1)T
(m)
L +pt

(m)
L −→ coker −→ 0

is an exact sequence of finite Fp-vector spaces, which splits. Combining this with

#Q(F(L))i = #Q(G(L))(p−1)T
(m)
L +pt

(m)
L = #kL <∞ gives ĈL

(m)
= coker ≃ CL.

(iv) Since e′i > t
(1)
L′ , using (iv)′ yields the following diagram:

F(L′)e
′i ϕ−−−−→ G(L′)(p−1)T

(0)

L′ +e′ix x
F(L)i G(L)(p−1)T

(0)
L +i,

where the vertical arrows are canonical embeddings. Then it is easily seen that

Im [F(L)i ↪→ F(L′)e
′i ϕ−→ G(L′)(p−1)T

(0)

L′ +e′i]

⊂ Im [G(L)(p−1)T
(0)
L +i ↪→ G(L′)(p−1)T

(0)

L′ +e′i],

which implies the map ϕ : F(L)i → G(L)(p−1)T
(0)
L +i is well-defined and injective.
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□

Let N denote the set of all positive integers. Define a map λL : N → N by

λL(i) :=

{
(p− 1)T

(m)
L + pt

(m)
L if i = vL(wm) ∈ N (1 ≤ m ≤ h)

vL(ϕ(x)) for some x ∈ F(L)i \ F(L)i+1 otherwise,

which is characterized by

0 −→ C
(m)
L −→ Q(F(L))i

ϕ−→ Q(F(L))λL(i) −→ ĈL
(m)

−→ 0 if i = vL(wm) (1 ≤ m ≤ h),

ϕ : Q(F(L))i
∼−→ Q(G(L))λL(i) otherwise,

where ϕ is the map in Proposition 3.9. One can easily check that the map λL is
injective. From this observation, we shall decompose the set N into the disjoint union

S0 ∪
h∪

m=1

(Sm ∪ ∂Sm),

where

Sh :=
{
i ∈ N

∣∣∣ i < pt
(h)
L

}
,

Sm :=
{
i ∈ N

∣∣∣ t(m+1)
L < i− (p− 1)T

(m)
L < pt

(m)
L

}
(1 ≤ m < h),

∂Sm :=
{
i ∈ N

∣∣∣ i = (p− 1)T
(m)
L + pt

(m)
L

}
(1 ≤ m ≤ h),

S0 :=
{
i ∈ N

∣∣∣ i > (p− 1)T
(0)
L + t

(1)
L

}
.

It is easily seen that, for any positive integer m (≤ h), if ∂Sm ̸= ∅ then i < j < k for
any i ∈ Sm, j ∈ ∂Sm, k ∈ Sm−1, and if ∂Sm = ∅ then i < k for any i ∈ Sm, k ∈ Sm−1.
Then

λL({i ∈ N | i < vL(wh)}) ⊂ Sh,

λL({i ∈ N | vL(wm+1) < i < vL(wm)}) ⊂ Sm (1 ≤ m < h),

λL(vL(wm)) ∈ ∂Sm (1 ≤ m ≤ h, vL(wm) ∈ N),(Ob)

λL({i ∈ N | i > vL(w1)}) ⊂ S0.

Using Proposition 3.9, we can determine the valuation of the inverse image ϕ−1(y)
for any y ∈ G(L) as follows.

Proposition 3.10. For any y ∈ G(L)i \ G(L)i+1, let x be an element in F(L) such
that ϕ(x) = y. There exists an element w ∈ kerϕ ∩ F(L(x)) so that

vL(x+F w) =



i

ph
if i ∈ Sh

1

pm

{
i− (p− 1)T

(m)
L

}
if i ∈ Sm

vL(wm) if i ∈ ∂Sm

i− (p− 1)T
(0)
L if i ∈ S0.
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In particular, vL(x +F w) < vL(ϕ(x)). Furthermore, in the case where i ∈ Sh, the
valuation vL(x) is independent of the choice of x ∈ ϕ−1(y). In the case where i /∈ Sh,
vL(x) ≥ vL(wh).

Proof. Let e denote the ramification index of the extension L(x)/L. In Proposition 3.9,
replacing L, i by L(x), vL(x)(x) respectively, we can easily deduce from the observa-
tion (Ob) that

vL(x)(x) < vL(x)(wh) if i ∈ Sh

vL(x)(wm+1) < vL(x)(x+F w) < vL(x)(wm) if i ∈ Sm

vL(x)(x+F w) = vL(x)(wm) if i ∈ ∂Sm

vL(x)(x+F w) > vL(x)(w1) if i ∈ S0.

Here w is some element in kerϕ ∩ F(L(x)). For the case vL(x)(x) = vL(x)(wm), we

have vL(x) = vL(wm) from t
(1)
L(x) = et

(1)
L = et. The remaining cases follow again from

Proposition 3.9: For the case i ∈ Sh, we see that phvL(x)(x) = vL(x)(y) = ei, and

hence vL(x) = i/ph. For the case i ∈ Sm, (p − 1)T
(m)
L(x) + pmvL(x)(x) = vL(x)(y) = ei,

and hence vL(x) = {i − (p − 1)T
(m)
L }/pm. For the case vL(x)(x) > vL(w1), since

ϕn(F(L(x))
j−(p−1)T

(0)
L(x)) = G(L(x))j for any integer j ≥ ei (> (p−1)T

(0)
L(x)+ t

(1)
L(x)), one

can verify vL(x)(x) = ei− (p− 1)T
(0)
L(x), and thus vL(x) = i− (p− 1)T

(0)
L . □

3.3. On endomorphisms ϕn : F → F . In this subsection we will use the same
notation as in §3.2, and show lemmas for §4. From now on, we focus on the case
F = G. Let ϕ be a height h isogeny in EndOK

(F) satisfying [p](kerϕ) = 0 (i.e.
kerϕ ⊂ ker [p]).

Lemma 3.11. For any positive integer m (< h),

pt
(h)
K ≤ (p− 1)T

(m)
K + t

(m+1)
K ≤ (p− 1)T

(m−1)
K + t

(m)
K .

Proof. It is easily seen that

(p− 1)T
(m)
K + t

(m+1)
K ≤ (p− 1)T

(m)
K + pt

(m)
K = (p− 1)T

(m−1)
K + t

(m)
K .

Since (p− 1)T
(h−1)
K + t

(h)
K = pt

(h)
K , the statement follows, by induction. □

Lemma 3.12. Let n be any positive integer. For any x ∈ F ,

ϕn(x) ∈

{
FphnvK(x) if vK(x) < vK(wh)/(p

h)n−1

Fpt
(h)
K if vK(x) ≥ vK(wh)/(p

h)n−1.

Proof. Let i := vK(x). If i < vK(wh)/(p
h)n−1 then repeated application of Proposi-

tion 3.9 yields vK(ϕn(x)) = phni, and hence ϕn(x) ∈ Fphni. Assume that vK(x) ≥
vK(wh)/(p

h)n−1. Then, repeated application of Proposition 3.9 yields vK(ϕn−1(x)) ≥
vK(wh), and hence

vK(ϕn(x)) ≥ (p− 1)T
(m−1)
K + t

(m)
K

12



for some positive integer m (≤ h). By Lemma 3.11, we have vK(ϕn(x)) ≥ pt
(h)
K . Thus,

ϕn(x) ∈ Fpt
(h)
K . □

Lemma 3.13. Let n be any positive integer. For any x ∈ F ,

vK(x)


=
vK(ϕn(x))

phn
if vK(ϕn(x)) ∈ Sh

≥ vK(wh)

ph(n−1)

(
=
pt

(h)
K

phn

)
if vK(ϕn(x)) /∈ Sh.

Proof. The statement for the case where vK(ϕn(x)) ∈ Sh follows from repeated appli-
cation of Proposition 3.10. Assume that vK(ϕn(x)) /∈ Sh. Consider the case ϕ

n(x) ̸= 0.
If vK(x) /∈ Sh then vK(x) ≥ phvK(wh) from the definition of Sh. If vK(x) ∈ Sh then,
by Proposition 3.9 there exists a positive integer N (≤ n) so that vK(ϕN (x)) /∈ Sh,
vK(ϕN−1(x)) ∈ Sh, and vK(ϕN−1(x)) ≥ vK(wh) by Proposition 3.10. Repeated ap-

plication of Proposition 3.10 yields vK(x) = vK(ϕN−1(x))/ph(N−1) ≥ vK(wh)/p
h(n−1).

We next consider the case ϕn(x) = 0. Then, there exist some integers i, k (1 ≤ i ≤
h, 0 ≤ k < n) so that ϕi ◦ · · · ◦ ϕ1 ◦ ϕk(x) = 0 and ϕi−1 ◦ · · · ◦ ϕ1 ◦ ϕk(x) ̸= 0. By
Lemma 3.7, we have vK(ϕk(x)) = vK(wi). If vK(ϕk(x)) ∈ Sh then repeated application

of Proposition 3.10 yields vK(x) = vK(wi)/p
hk ≥ vK(wh)/p

h(n−1). If vK(ϕk(x)) /∈ Sh
then, by the same method as in the case vK(ϕn(x)) /∈ Sh, ϕ

n(x) ̸= 0 above, we have

vK(x) ≥ vK(wh)/p
h(k−1), and hence vK(x) > vK(wh)/p

h(n−1). □

Lemma 3.14. If an integer i satisfies (p− 1)T
(m)
K + t

(m+1)
K < i ≤ (p− 1)T

(m)
K + pt

(m)
K

for some integer m (1 ≤ m < h) then ϕ(F
1

pm
{i−(p−1)T

(m)
K }

) ⊂ Gi.

Proof. Take x ∈ F
1

pm
{i−(p−1)T

(m)
K }

. Let i0 := vK(x) ∈ Z. Then

vK(wm+1) <
1

pm
{i− (p− 1)T

(m)
K } ≤ i0.

If vK(wm′+1) < i0 ≤ vK(wm′) for some integer m′ (1 ≤ m′ < h) then m′ ≤ m, by
vK(wm′+1) ≥ vK(wm+1). From Proposition 3.9 and Lemma 3.11, we have

vK(ϕ(x)) ≥ (p− 1)T
(m′)
K + pm

′
i0{

≥ i if m′ = m

> (p− 1)T
(m′)
K + t

(m′+1)
K ≥ (p− 1)T

(m−1)
K + t

(m)
K > i if m′ < m.

If i0 > vK(w1) then from Proposition 3.9 and Lemma 3.11 we have

vK(ϕ(x)) ≥ (p− 1)T
(0)
K + t

(1)
K ≥ (p− 1)T

(m−1)
K + t

(m)
K > i.

In each case, we have ϕ(x) ∈ F i. □

4. Relative Kummer theory over local fields

In this section we will use the same notation as in §§3.2, 3.3. Here we establish
relative Kummer theory.
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For any positive integer n, consider the filtration

F/ϕn(F) = F1/ϕn(F) ∩ F1 ⊇ F2/ϕn(F) ∩ F2 ⊇ · · · ⊇ F i/ϕn(F) ∩ F i ⊇ · · · .

We write (F/ϕn(F))i for the i-th submodule F i/ϕn(F) ∩ F i.

The following theorem provides algebraic connection among {(F/ϕm(F))i}i,m, rel-
atively. In other words, it can be seen as a dissection of F/ϕn(F) to an explicit layer
structure.

Theorem 4.1 (Relative Kummer theory). Let i be any positive integer.

(i) If 0 < i ≤ pt
(h)
K then for any integer k (0 ≤ k ≤ n) the sequence

0 −→ kerϕk ∩ F i/phk

ϕn−k(kerϕn ∩ F) ∩ F i/phk
−→ (F/ϕn−k(F))i/p

hk ϕk

−→ (F/ϕn(F))i

id−→ (F/ϕk(F))i −→ 0

is exact.
(ii) If (p−1)T

(m)
K +t

(m+1)
K < i ≤ (p−1)T

(m)
K +pt

(m)
K for some integer m (1 ≤ m < h)

then the sequence

0 −→ (kerϕ+F ϕ
n−1(F)) ∩ F

1
pm

{i−(p−1)T
(m)
K }

ϕn−1(F) ∩ F
1

pm
{i−(p−1)T

(m)
K }

−→ (F/ϕn−1(F))
1

pm
{i−(p−1)T

(m)
K }

ϕ−→ (F/ϕn(F))i
id−→ (F/ϕ(F))i −→ 0

is exact.
(iii) If k(p− 1)T

(0)
K + t

(1)
K < i ≤ n(p− 1)T

(0)
K + t

(1)
K for some integer k (0 ≤ k < n)

then the sequence

0 −→ (kerϕk +F ϕ
n−k(F)) ∩ F i−k(p−1)T

(0)
K

ϕn−k(F) ∩ F i−k(p−1)T
(0)
K

−→ (F/ϕn−k(F))i−k(p−1)T
(0)
K

ϕk

−→ (F/ϕn(F))i −→ 0

is exact.
(iv) If i > n(p− 1)T

(0)
K + t

(1)
K then (F/ϕn(F))i = 0.

Proof. (i) This is trivial for the case k = 0. Assume that k > 0. The canonical

identity map id is clearly surjective. By Lemma 3.12, since ϕk(ϕn−k(F) ∩ F i/phk) ⊂
ϕn(F) ∩ ϕk(F i/phk) ⊂ ϕn(F) ∩ F i, the map ϕk : (F/ϕn−k(F))i/p

hk → (F/ϕn(F))i is
well-defined. We next show that

Imϕk = ker
[
(F/ϕn(F))i

id−→ (F/ϕk(F))i
]

(= (ϕk(F) ∩ F i)/(ϕn(F) ∩ F i)).

The inclusion Imϕk ⊂ ker (id) is clear. Take any ϕk(x) ∈ ker (id), where x ∈
F , vK(ϕk(x)) = i0 for some integer i0 ≥ i. From Lemma 3.13, we have vK(x) ≥
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i/phk ≥ ⌈i/phk⌉ by vK(x) ∈ Z. Therefore x ∈ F i/phk , and so Imϕk ⊃ ker (id). Finally,

kerϕk =

{
x ∈ (F/ϕn−k(F))i/p

hk

∣∣∣∣ ϕk(x) ∈ ϕn(F) ∩ F i

}
=

(kerϕk +F ϕ
n−k(F)) ∩ F i/phk

ϕn−k(F) ∩ F i/phk

=
kerϕk ∩ F i/phk

ϕn−k(F) ∩ F i/phk
(by Lemma 3.13)

=
kerϕk ∩ F i/phk

ϕn−k(kerϕn ∩ F) ∩ F i/phk
.

(ii) The canonical identity map id is clearly surjective. By Lemma 3.14, since

ϕ(ϕn−1(F) ∩ F
1

pm
{i−(p−1)T

(m)
K }

) ⊂ ϕn(F) ∩ ϕ(F
1

pm
{i−(p−1)T

(m)
K }

) ⊂ ϕn(F) ∩ F i,

the map ϕ : (F/ϕn−1(F))
1

pm
{i−(p−1)T

(m)
K } → (F/ϕn(F))i is well-defined. We next

show that

Imϕ = ker
[
(F/ϕn(F))i

id−→ (F/ϕ(F))i
]

(= (ϕ(F) ∩ F i)/(ϕn(F) ∩ F i)).

The inclusion Imϕ ⊂ ker (id) is clear. Take any ϕ(x) ∈ ker (id), where x ∈ F , vK(ϕ(x)) =

i0 for some integer i0 ≥ i. By Lemma 3.11, since pt
(h)
K ≤ (p− 1)T

(m)
K + t

(m+1)
K < i, we

have i0 /∈ Sh. If i0 ∈ Sm′ (1 ≤ m′ < h) then m′ ≤ m, by i0 ≥ i. From Proposition 3.10,
there exists w ∈ ker ∩ F so that

vK(x+F w) =
1

pm′

{
i0 − (p− 1)T

(m′)
K

}

≥ 1

pm

{
i− (p− 1)T

(m)
K

}
if m′ = m

> vK(wm′+1) ≥ vK(wm) ≥ 1

pm

{
i− (p− 1)T

(m)
K

}
if m′ < m.

If i0 ∈ ∂Sm′ (1 ≤ m′ ≤ h) then m′ ≤ m, by i0 ≥ i. From Proposition 3.10, there exists
w ∈ ker ∩ F so that

vK(x+F w) = vK(wm′) ≥ vK(wm) ≥ 1

pm

{
i− (p− 1)T

(m)
K

}
.

If i0 ∈ S0 then by Proposition 3.10 there exists w ∈ ker ∩ F so that

vK(x+F w) = i0 − (p− 1)T
(0)
K > vK(w1) ≥ vK(wm) ≥ 1

pm

{
i− (p− 1)T

(m)
K

}
.

Consequently, there exists w ∈ ker ∩ F so that

vK(x+F w) ≥
1

pm

{
i− (p− 1)T

(m)
K

}
≥
⌈

1

pm

{
i− (p− 1)T

(m)
K

}⌉
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by vK(x +F w) ∈ Z. Therefore ϕ(x) = ϕ(x+F w) ∈ Imϕ, and so Imϕ ⊃ ker (id).
Finally,

kerϕ =

{
x ∈ (F/ϕn−1(F))

1
pm

{i−(p−1)T
(m)
K }

∣∣∣∣ ϕ(x) ∈ ϕn(F) ∩ F i

}

=
(kerϕ+F ϕ

n−1(F)) ∩ F
1

pm
{i−(p−1)T

(m)
K }

ϕn−1(F) ∩ F
1

pm
{i−(p−1)T

(m)
K }

.

(iii) This is trivial for the case k = 0. Assume that k > 0. From Proposition 3.9,

ϕk(ϕn−k(F) ∩ F i−k(p−1)T
(0)
K ) ⊂ ϕn(F) ∩ ϕk(F i−k(p−1)T

(0)
K ) = ϕn(F) ∩ F i, and hence

ϕk : (F/ϕn−k(F))i−k(p−1)T
(0)
K → (F/ϕn(F))i is well-defined. By Proposition 3.9, since

ϕk(F i−k(p−1)T
(0)
L ) = F i, the map ϕk is surjective. Finally,

kerϕk =

{
x ∈ (F/ϕn−k(F))i−k(ph−1)t

∣∣∣∣ ϕk(x) ∈ ϕn(F) ∩ F i

}
=

(kerϕk +F ϕ
n−k(F)) ∩ F i−k(ph−1)t

ϕn−k(F) ∩ F i−k(ph−1)t
.

(iv) This follows directly from Proposition 3.9. □

Our important purpose of relative Kummer theory is to understand the relative
structure of Selmer groups, which is developed in the forthcoming paper [4].
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[1] V. G. Berkovič, On the division by an isogeny of the points of an elliptic curve, Math. USSR Sb.
22 No.3 (1974), 473–492.
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