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Abstract. The importance of DNA microarrays and Tag-Antitag (TAT)
systems has prompted the recent development of various approaches for
high-fidelity design, including analytical methods based on an ensemble
average error probability per conformation, or computational incoherence
(ε). Although predictions for dilute inputs indicate the easy attainment
of excellent fidelity, recently a sharp phase transition from the low-error
ε-behavior predicted for dilute inputs, to a high-error ε-behavior was pre-
dicted to accompany an asymmetric (i.e., single-tag) excess input. This
error-response, which is likely to be the critical test of TAT system ro-
bustness for DNA-based computing applications that employ non-linear
amplification, is examined more closely, via derivation of an approxi-
mate expression, εe(i) for the single-tag, excess limit. The temperature-
dependence of this expression is then characterized, and applied to derive
an expression for a novel TAT system error-parameter, T †

i which defines
the temperature of minimal εe(i). T †

i is taken to provide a precise def-
inition of the stringent reaction temperature previously discussed con-
ceptually in the literature. A similar analysis, undertaken for a uniform
excess multi-tag input, indicates the absence of a phase transition in ε.
The validity of each expression is discussed via simulation, with com-
parison to the general model. Applicability of {T †

i } to both TAT system
design and selection of an optimal reaction temperature is discussed.

1 Introduction

DNA microarrays are indexed arrays of single-stranded (ss) DNA probes which
are immobilized on a solid substrate. When exposed to a set of unbound target
ssDNA strands, the chip essentially performs an exhaustive, parallel search for
complementary sequences between the immobilized probes and target species.
DNA chips have been successfully applied to gene expression profiling (GEP) and
genotyping on a genomic scale [1], and have also been suggested for applications
in DNA computing [2], and DNA computing-based biotechnology [3]. Notably,
design for computational application simplifies word selection, since the ssDNA
species need not be correlated to a genome of interest, but may be selected
arbitrarily. The resulting set forms a Tag-Antitag system [4], constrained only by



the requirement that each anchored probe, or ‘antitag’ species be the Watson-
Crick complement of exactly one corresponding target, or ‘tag’ species. The
anchored component is often referred to as a ‘universal’ DNA chip.

Although a number of design goals exist for TAT systems (e.g., uniform ener-
getics, minimal folding, maximal specific-affinity, etc. [5]), the design for maximal
specific affinity is the most challenging, due to the highly-coupled nature of the
hybridizing system. Various heuristic methods for TAT system design have been
proposed [4, 6, 7, 2, 8] for this purpose. In addition, a statistical thermodynamic
approach for TAT system error analysis and design has also been reported [9,
5], which is attractive due to physical motivation, the availability of energetic
parameters, and the generation of a quantitative, well-defined measure of system
performance. Fundamental to this approach is the modelling of system error in
terms of an ensemble average probability of error hybridization per conformation
(the computational incoherence), so that the inverse problem of system design
is equated to the process of measure minimization. Thus far, results include ap-
proximate expressions for dilute single-tag and multi-tag inputs [9], and general
single-tag inputs[5]. Note that an equilibrium approach has also been applied
to investigate the fidelity of DNA-protein interactions [10], nucleic acid-based
antisense agents [11], and via the computational incoherence, the annealing [12]
and annealing-ligation biosteps of DNA-based computing [13].

1.1 Recent Work and Motivation

In [5], an approximate solution for the computational incoherence of the TAT
system in response to a single-tag input, εi was derived for the error-response
over a wide range of input tag concentrations. For all error conditions, the sim-
ulated dependence of εi on total input tag concentration (Co

i ) indicated a sharp
phase-transition between high-error and low-error operation, in the vicinity of
an equimolar input (Co

i = Co
a, the total concentration of each antitag species),

for temperatures, T beneath the melting transition of the planned TAT species.
In particular, TAT system fidelity was predicted to abruptly transition between:
(1) a monotonically increasing function of T (dilute inputs; Co

i � Co
a), char-

acterized by low-error operation; and (2) a convex function of T (excess in-
puts; Co

i � Co
a), characterized by an error minimum at temperature, T †

i , with
exponentially-increasing εi away from this temperature. Intuitively, this transi-
tion signals saturation of the target antitag, i∗ which naturally accompanies an
excess single-tag input, beneath the melting transition of the target TAT duplex.

For simple, 1-step TAT system applications in biotechnology, dilute condi-
tions may generally be safely assumed. Given the ease of attaining high-fidelity
performance at low temperatures, predicted in the dilute regime [9, 5], the bias-
ing of DNA-computers to ensure dilute regime operation of an associated TAT
system component is clearly desirable. However, given the tendency for DNA
computing architectures to implement repeated linear strand growth, via merge
operations, as well as species-specific, non-linear strand growth via PCR amplifi-
cation, over the course of multiple steps/rounds [8], there appears to be a strong



potential for computational processes to generate an asymmetric input, consist-
ing of a dilute component combined with an excess component of one (or more)
input species. In this case, consistent high-fidelity operation at low temperatures
is predicted to become substantially more problematic, for even the best encod-
ings (see Sec. 4). For these architectures, consideration of the associated TAT
system’s |i| single-input, excess-error response curves yields valuable information
for selection of a reaction temperature, Trx appropriately robust to a range of
asymmetric excess-inputs. To support this analysis, the current work undertakes
a closer examination of the single-tag error behavior in the excess regime, with
the aim of identifying a design principle which renders the implemented TAT
systems maximally robust to asymmetric, excess inputs.

Following an overview of the general model for predicting TAT system single-
input, error-response (Sec. 2), an approximate expression is derived in Sec. 2.1
for εi in the limit of excess input (εe(i)). Sec. 2.2 then discusses the temperature-
dependence of this expression, followed in Sec. 2.3 by identification of a new TAT
system parameter, T †

i , which estimates the temperature of optimal fidelity, given
an excess input of tag species, i. T † is taken to provide a novel, precise definition
of the stringent Trx previously discussed conceptually in the literature for the
TAT system [4]. For completeness, Sec. 3 describes a parallel analysis for the
uniformly excess input. Sec. 4 reports a set of statistical thermodynamic simula-
tions undertaken to explore the validity and implications of derived expressions
for εe(i) and T †

i . In closure, Sec. 5 discusses applicability to TAT system design.

2 The Single-tag Input

The error probability per hybridized tag for a TAT system, in response to an
input of a single tag species, i is estimated by the expression [5],

εi =

∑
j∗ �=i∗ Cij∗∑

j∗ Cij∗
= (1 + SNRi)−1. (1)

Here, SNRi is the signal-to-noise ratio,

SNRi =
Ci∗Kii∗∑

j∗ �=i∗ Cj∗Kij∗
, (2)

where Kij∗ denotes the net equilibrium constant of duplex formation between tag
species i and antitag species j∗, while Kii∗ distinguishes that of matching TAT
pair, {i, i∗}. For approximation purposes, it is typical to assume a small overall
error-rate, so that (i.e.,

∑
j∗ Cij∗ ≈ Cii∗)[9, 5]. At equilibrium, this condition,

here referred to as weak orthogonality takes the convenient form,
∑

j∗ Cj∗Kij∗ ≈
Ci∗Kii∗ . Although this approximation will begin to fail for an excess (but not
dilute) input, as Trx is reduced to the vicinity of the melting temperature of
the most stable error TAT pair, it nevertheless facilitates an investigation of the
approximate functional form of εi. Furthermore, upon failure, this approximation



will overestimate εi, and thus provide a bounding value, which, as simulations
indicate, is not too far off the mark [5].

Following application of weak orthogonality, approximate solution of Eq. 1
involves re-expression of Cj∗ in terms of equilibrium constants and initial con-
centrations, via combination of the |j∗|+1 equations of stand conservation, with
an equation of mass action for each component equilibrium. In particular, strand
conservation yields an equation of the form,

Ca = Cj∗(1 + Khp
j∗ + CiKij∗), (3)

for each antitag species, j∗, and equation,

Co
i = Ci(1 + Khp

i +
∑
j∗

C∗
j Kij∗), (4)

for the single input tag species, i, where the impact of tag-tag interaction has
been neglected. Strict estimation of Ci∗ then proceeds via numerical solution of
the |j∗| + 1 coupled equations formed by Eqs. 3 and 4. In [5], an approximate
approach was used to derive a general solution for εi, applicable over a wide
range of input concentrations. Readers are referred to the original paper, for a
detailed development and discussion. In the current work, attention is restricted
to a more detailed analysis of TAT system behavior in the excess-input limit.

2.1 Behavior in the Excess Limit

A simple, approximate expression for the single-tag error-response, εi in the
limit of excess input (i.e., Co

i ≥ 10Ca) may be derived straightforwardly, by
noting that the impact of hybridization on the equilibrium concentration of the
input tag species, Ci may be neglected. This allows Eq. 4 to be approximated
as Ci ≈ Co

i (1 + Khp
i )−1. Substitution of this expression into Eq. 3 yields,

Cj∗ ≈ Ca(1 + Khp
i )

(1 + Khp
i )(1 + Khp

j∗ ) + Co
i Kij∗

, ∀ j∗. (5)

Invoking weak orthogonality, followed by insertion of these expressions reduces
Eq. 1 to the desired approximate form,

εe(i) ≈
∑

j∗ �=i∗

Kij∗ [(1 + Khp
i )(1 + Khp

i∗ ) + Co
i Kii∗ ]

Kii∗ [(1 + Khp
i )(1 + Khp

j∗ ) + Co
i Kij∗ ]

, (6)

which applies to the case of excess input. In the absence of significant hairpin
formation, this reduces to a simple ratio,

εe(i) ≈
∑

j∗ �=i∗

Co
i + K−1

ii∗

Co
i + K−1

ij∗
. (7)



For comparison purposes, the approximate expression for the converse limit of
dilute input, without hairpinning was given in [5] as the simple ratio,

εd(i) ≈
∑

j∗ �=i∗

Kij∗

Kii∗
. (8)

2.2 Temperature Dependence

The temperature-dependence of εe(i) may be investigated by straightforward
differentiation. Neglecting hairpin formation, this process yields

dεe(i)

dT
≈ εe(i)

RT 2

(〈
∆H◦

ij∗

1 + Co
i Kij∗

〉
e

− ∆H◦
ii∗

1 + Co
i Kii∗

)
, (9)

where 〈xij∗〉e denotes an ensemble average taken only over the set of error con-
formations, defined formally by the expression,

〈xij∗〉e =

∑
j∗ �=i∗ Cij∗xij∗∑

j∗ �=i∗ Cij∗
=

∑
j∗ �=i∗ Cj∗xij∗Kij∗∑

j∗ �=i∗ Cj∗Kij∗
(10)

This quantity is distinguished from 〈xij∗〉 by the absence of a contribution from
Cii∗ in both numerator and denominator, due to the restriction that measure-
ments are over the error ensemble. In contrast with the monotonically increasing
form reported for dεd(i)/dT [9], the form of Eq. 9 suggests that εe(i) behaves as
a convex function of T , with a minimum between the melting temperatures of
the planned and error TAT pairs. This is discussed via simulation, in Sec. 4.

2.3 Robustness in the Excess Limit: the Stringent Temperature

Eq. 9 may also be used to derive an approximate expression for the temperature,
T †, at which εe(i) assumes a minimum value. This is accomplished by noting that
at T †

i , dεe(i)/dT = 0, so that

〈
∆H◦

ij∗

1 + Co
i Kij∗

〉†

e

=
∆H◦

ii∗

1 + Co
i Kii∗

, (11)

where the superscript, ‘†’ denotes strict evaluation at T = T †
i , followed by the

application of three well-motivated approximations. First of all, as simulations [5]
predict that T †

i is consistently located substantially above the melting transition
of all error TAT species, the statement Co

i Kij∗ � 1 is expected to hold, so that
1 + Co

i Kij∗ ≈ 1. Secondly, the ensemble average enthalpy of formation for error
species 〈∆Ho

ij∗〉†e is assumed to be approximated to first order by the enthalpy
of the single most-dominant error species, ∆Ho

ij∗(err) ≡ Inf{∆Ho
ij∗ ; j∗ 	= i∗},

given the usual dominance of this term in the weighted average. Finally, the
statement Co

i Kii∗ � 1 should hold, since T † is also expected to be located
beneath the melting temperature of the planned TAT species, ii∗ [5], at least for



the case of excess input. In this case, Co
i Kii∗ + 1 ≈ Co

i Kii∗ . Application of each
of these expressions to Eq. 2.3, followed by rearrangement yields,

T †
i ≈ ∆Ho

ii∗

∆So
ii∗ + R lnCo

i + R ln
[

∆Ho
ij∗ (err)

∆Ho
ii∗

] (12)

which defines the Trx for optimum-fidelity operation, given an excess input of
species, i. This new TAT system parameter is taken to provide a novel, precise
definition of the intuitive concept of stringent Trx previously discussed concep-
tually in the literature [4]. Applicability of the parameter set, {T †

i } to both TAT
system design and selection of optimal Trx is discussed in Sec. 5.

3 The Excess Multi-tag Input

An approximate expression for the error-response due to a multi-tag input in the
excess limit may be derived similarly, beginning with the standard expression
for the computational incoherence [12, 13], as applied to the TAT system[9, 5]:

ε =

∑
i

∑
j∗ �=i∗ Cij∗∑

i

∑
j∗ Cij∗

, (13)

and proceeds via approximation of the equilibrium concentrations, in a process
similar to the single-tag development presented in Sec. 2. First, the impact of
hybridization on each excess Ci is again neglected, so that the equation of strand
conservation for each input tag, i again takes the approximate form, Ci ≈ Co

i (1+
Khp

i )−1. Using this expression, the equation of strand conservation for each
antitag species, j∗ may then be written as,

Cj∗ ≈ Ca

(
1 + Khp

j∗ +
∑

i

Co
i Kij∗

1 + Khp
i

)−1

. (14)

The sum over i may now be simplified by invoking the dual of ‘weak orthogo-
nality’,

∑
i Co

i Kij∗ ≈ Co
j Kjj∗ which holds for all but the worst TAT encodings,

but only under conditions of excess input for all tag species. Insertion of these
expressions into Eq. 13 via mass action and invoking weak orthogonality yields
the desired approximation,

εe ≈
∑

i
Co

i

1+Khp
i

∑
j∗ �=i∗

Kij∗ (1+Khp
j )

(1+Khp
j )(1+Khp

j∗ )+Co
j Kjj∗∑

i
Co

i Kii∗
(1+Khp

i )(1+Khp
i∗ )+Co

i Kii∗

, (15)

where subscript, e denotes excess input, for all i. The form of this expression is
similar to that reported for a dilute, multi-tag input [9].

The temperature-dependence of εe may be investigated by a rather tedious
process of differentiation. Here, only the result is presented:

dεe

dT
≈ εe

RT 2
〈∆∆H◦

ij∗〉e, (16)



where hairpin formation has been neglected, ∆∆Hij∗ ≡ ∆H◦
ij∗ − ∆H◦

jj∗ , and
〈x〉e denotes the ensemble average of quantity x, computed over all error TAT
pairs, {i, j∗ 	= i∗}, respectively. Again, this expression is functionally similar to
the temperature-dependence reported in [9] and [5] for the dilute multi-tag and
single-tag inputs, respectively, although in [9], 〈x〉e was mistakenly identified
in the text as the sum, rather than ensemble average over the enthalpies of
formation for error conformations. From the form of Eq. 16, the error-response
due to an excess input is a monotonically increasing function of T , with no error
minimum between the melting temperatures of the planned and dominant error
duplexes (i.e., no stringent temperature). This typical behavior is in marked
contrast with the logarithmically convex TAT system error behavior predicted in
the vicinity of the error minimum, in response to an asymmetric input, composed
of an excess of a single (or several, but not all) tag species.

4 Simulations

In order to investigate the applicability of εe(i) (Eq. 7) for approximating the
error-response due to an asymmetric input of a single, excess tag species, a set of
simulations was implemented via (MathematicaTM). Fig. 1 illustrates simulation
results, which predict εi for the minimal complexity (i.e., 2-probe) DNA chip,
composed of ssDNAs of length 20 bases, in which the input target species may
participate in a full-length planned hybrid, or a single error duplex of length
(a) 15 base-pairs (bps), (b) 10 bps, or (c) 5 bps. Predictions presented as a
function of Trx, and in response to specific dilute (Co

i = 10−10M ; panel 1,
solid blue lines), and excess (Co

i = 10−8M ; panel 2, solid red lines) input tag
concentrations. Each antitag present at total concentration, Ca = 10−9M ; pH
= 7.0, and [Na+] = 1.0 M. Each Kij∗ was estimated via the Gibbs factor, using
a Watson-Crick, two-state model, assuming mean doublet stacking energetics
(∆H◦ = -8.36 kcal/mol; ∆S◦ = -22.4 cal/(mol K) [14]). The impact of dangling
ends, hairpin formation and tag-tag interaction were also neglected. Dashed lines
in panels 1 and 2 present corresponding predictions provided by the approximate
expressions presented in Sec. 2.1 for the limiting cases of dilute (εd(i)) and excess
(εe(i)) single-tag input, respectively.

For each error condition, Panel 3 compares the predicted temperature for op-
timal fidelity excess operation, T † obtained via (1) visual inspection of plotted εi

curves, and (2) approximate expression, Eq. 12. For comparison purposes, melt-
ing temperatures, T ∗

m(pl) for each planned duplex (under both excess and dilute
input conditions), and each error duplex, T ∗

m(err) (excess conditions only) are
also illustrated, as predicted in isolation (denoted by, ‘*’). Each listed T ∗

m value
corresponds to the temperature which maximizes the corresponding differential
melting curve, generated via a statistical, two-state model of DNA melting [15,
5]. Panel 4, top inset shows a blow-up of high-error curve, panel 2(a); Middle
and bottom insets illustrate isolated, differential melting curves predicted in iso-
lation for the planned (solid curves) and dominant error (dashed curves), for
excess (‘10x’) and dilute (‘0.1x’) input, respectively.



5 Discussion and Conclusion

As shown in Fig. 1 (panel 2), simulations for all error conditions indicate that
εe(i) (Eq. 7) is in good agreement with the predictions of the general model,
εi reported in [5] for excess input, with only minor deviations at high and low
temperatures. In each case, excess-input error-response is predicted to assume
the expected logarithmically convex function of Trx, with a minimum at dis-
tinguished temperature, T †. This behavior is in stark contrast to the low-error,
monotonically Trx-dependent error-response predicted for both single-tag, dilute
inputs (panel 1) and multi-tag inputs which are either uniformly dilute [9, 5], or
uniformly at excess (Eq. 15).
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Fig. 1. Behavior and validity of approximate models: Panels 1 and 2: estimates
of εi provided by εd(i) (Eq. 8) and εe(i) (Eq. 7) for limiting dilute and excess inputs
(dashed curves), respectively, vs. full-model predictions (solid curves) for specific dilute
(‘0.1x’: Co

i = 0.1C◦
a ; blue) and excess (‘10x’: Co

i = 10C◦
a ; red) inputs. For all cases,

C◦
a = 10−9M ; [Na+] = 1.0M . Curve sets (a), (b), and (c) depict error-responses due

to a single dominant error-duplex of length 15/20, 10/20, and 5/20 bps, respectively.
Panel 3: Optimal-fidelity temperatures for excess-input operation, T † estimated by
visual inspection of (a-c) (row 1), and Eq. 12 (row 2); Melting temperatures for the
planned duplex (excess and dilute inputs) and error duplexes (excess only), predicted
in isolation (denoted ‘*’) also listed for comparison (rows 4-6). Panel 4: (Top sub-panel)
Blow-up of high-error curve; Middle, bottom sub-panels: isolated differential melting
curves for the planned (solid curves) and dominant error species (dashed curves), for
excess (‘10x’) and dilute (‘0.1x’) inputs, respectively.



For TAT systems which form a component of a DNA computer, the potential
for excessive error due to an asymmetric input, consisting of a dilute component
combined with an excess component of one (or more) input species may be eval-
uated by examining that system’s set of single-tag, excess input values, {εe(i)},
at the operating temperature of interest, Trx. For such systems, the mean value
of εe(i) over i is proposed as a well-defined measure for high-fidelity design. As
indicated by Fig. 1 (panel 3), Eq. 12 provides a good approximation for T †

i . Note
that minimization of εe(i) has the additional desirable effect of decreasing the
sensitivity of the excess error response to variations away from T †, since this
process broadens the width of εe(i) around T †

i .
The evident dominance of target duplex formation on the inflection point,

as evinced by the general proximity of T †
i to the melting temperature of the

isolated planned TAT pair, T ∗
m(pl) under excess conditions (see Fig. 1(panel 3))

deserves further discussion. As illustrated in Fig. 1(panel 4; top inset), in the
context of the high-error case (panel 2, (a)), the sigmoidal portion of εe(i) be-
neath T †

i (vertical line) is seen to just span the interval between T ∗
m(pl) and

T ∗
m(err), as indicated by the differential melting curves of the isolated planned

and error TAT pairs, predicted under excess-input conditions (Panel 4, middle
inset; solid and dashed red curves, respectively)). Overall duplex formation in
this regime, predicted to accompany successive decreases in Trx beneath T †

i ,
is thus characterized by increasing concentrations of error TAT species, com-
pensated for by increasingly smaller fractional increases in the concentration of
planned TAT species, due to the onset of planned antitag saturation (thus, the
sigmiodal shape).

From a fidelity perspective, for systems in which the potential for asymmetric,
excess input is unavoidable, the most robust operating condition is approximated
by the mean value of the set {T †

i }. For this reason, design for uniform T †
i val-

ues, enabling uniformly error-resistant operation at the mean, is proposed as a
second well-defined criterion for guiding high-fidelity statistical-thermodynamic
TAT design. On the other hand, several points of care are required in interpreting
the mean T †

i value as an optimal operation Trx. First of all, if an architecture can
be verifiably biased to ensure operation of any associated TAT system strictly
in the dilute regime, then a lower temperature of much greater fidelity may be
employed, according to the temperature-dependence of εd, as shown in Fig. 1,
panel 1 [9]. If non-dilute operating conditions cannot be strictly avoided, then
simulations strongly suggest the utility of selecting a higher operating temper-
ature, for which {T †} should provide a guide. However, additional care is still
required.

An additional concern is that operating conditions be selected which not
only ensure high fidelity, but also allow substantial process completion, for all
potential input conditions of interest (i.e., both excess and dilute). For this
reason, a comparison of T † with the melting temperatures of each planned TAT
species (denoted, T ∗

m(i), for a TAT system with |i| distinct, single-tag inputs)
as expected under dilute conditions is also indicated. Based on the predictions
provided by Fig. 1 (panel 3, row 6), adoption of T †

i as the optimal Trx for general



system operation, although attractive due to its robustness to error-prone excess
inputs, will always come at the cost of reduced completion of the planned TAT
pair, and according to Fig. 1, is strictly satisfactory only for well-encoded TAT
systems (as T † is located beneath T ∗

m(pl), for both dilute and excess inputs). This
is illustrated more clearly in Fig. 1 (panel 4, bottom inset), which compares the
depressed melting transition of the planned duplex under dilute input ((’0.1x’),
solid blue curve; compare with the same transition, under excess input (solid red
curve, middle inset)) with the elevated T †

i characteristic of a high-error system
(vertical line), indicating a substantial lack of completion of planned duplex, at
T †

i under dilute conditions. If the potential for operation in the non-dilute regime
cannot be avoided (so that a suitable, high-fidelity, lower Trx cannot be selected),
the best compromise is probably to select Trx = Inf{{T ∗

i }
⋃{T ∗

m(i)}}, where
the melting temperatures of planned TAT pairs are assessed under the most
dilute practical conditions of interest. Furthermore, to minimize this problem, it
is evident that a third well-motivated design criterion is to encode for uniform
T ∗

m’s of planned interaction, as suggested previously [8].
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