
Automatic Error Detection Method for Japanese Particles

55

Automatic Error Detection Method for Japanese Particles

Hiromi Oyama

Abstract:
In this article, I propose an approach for detecting appropriate usage models of case particles in the
writings of Japanese Second Language learners (JSL) in order to create a Japanese automatic error
detection system. As learner corpora are receiving special attention as an invaluable source for the
educational feedback to improve teaching material and methodology, automatic methods of error
analysis have become necessary to facilitate the development of learner corpora. Particle errors account
for a substantial proportion of all grammatical errors by JSL learners and discourage the readers from
understanding the meaning of a sentence. To address this issue, I trained Support Vector Machines (SVMs)
to learn correct patterns of case particle usages from a Japanese newspaper text corpus. The result differs
according to the kind of the particle. The object marker “wo (を)” has the best score of 81.4%. Applying
the “wo (を)” model to detect wrong use of the particle, the result shows 92.6% for precision and 34.3%
for recall with the 100 instance test set. The result shows 95.2% for precision and
37.6% for recall with the 200 instance test set. Although this is a pilot study, this experiment shows a
promising result for Japanese particle error detection.

Key terms: Automatic Error Detection, Learner Corpora, Support Vector Machines, N-gram, Case Particle Detection

1. Introduction
The goal of the work is to automatically identify errors of case particles in Japanese learners’ writing by looking
at the local contextual cues around a target particle. Automatic error detection is an important task for helping
to build learner corpora with error information. Learner corpora consist of language learners’ spoken or written
texts and are a valuable resource for reconsidering teaching methodology, materials or classroom management.
There are a number of English learner corpora such as the International Corpora of Learners of English
(ICLE), the Cambridge Learner Corpus (CLC), the JEFLL (Japanese EFL Learner) Corpora , and the JLE
corpus (or SST corpus) that was compiled by NICT (the National Institute of Information and Communications
Technology)(Learner Corpus: Resources, n.d.).

There are a couple of Japanese language learner corpora such as the multilingual databases of Japanese
language learners’ essays compiled by the National Institute of Japanese Language, which is called “Taiyaku”
DB1 and the KY corpus (Kamata & Yamauchi, 1999), compiled by a special interest group. The former consists
of about 1,000 essays written by learners from 15 different countries. The latter consists of speech data from one
hundred Japanese learners.

Learner corpora, different from other types of existing corpora (e.g., the British National Corpus or the Brown

Polyglossia Vol. 18, February 2010

56

Corpus), include erroneous sentences mingled with normal sentences. Because of this, it is quite a task to find
those errors. To gain insights from the learner corpus and to contribute to Second Language Acquisition (SLA)
research, it is necessary to detect mistakes in the learners’ production, which is an extremely demanding task.
Automatic error detection is difficult because there are so many error patterns to generalize. Some researchers
have broken down the error detection task into certain types of errors; e.g., ill-formed spelling errors (Mays,
Damerau, & Mercer, 1991; Wilcox-O’Hearn, Hirst, & Budanitsky, 2008) , mass count noun errors (Brockett,
Dolan, & Gamon, 2006; Nagata et al., 2006) and preposition errors(Chodorow, Tetreault, & Han, 2007;
Tetreault & Chodorow, 2008; De Felice & Pulman, 2007, 2008), because all the different types of learners’
errors are too numerous to detect.

Thus, I propose an approach to learning which particle is most appropriate in a given context by representing
the context as a vector populated by features referring to its syntactic characteristics. I used a machine learning
algorithm known as Support Vector Machines (SVMs) with preprocessing methods to identify appropriate
particle usage in a corpus of learners’ writing. In the sections below, I first discuss related work on Japanese
case particle error detection and then discuss the particle identification and error detection experiments and
results.

2. Previous Research on Automatic Error Detection
Error detection research has been conducted for several purposes such as to check the performance of a machine
translation system (Suzuki & Toutanova, 2006a, 2006b) and to check for errors in Japanese learners’ writing
(Imaeda, Kawai, Ishikawa, Nagata, & Masui, 2003; Nampo, Ototake, & Araki, 2007). Imaeda et al. (2003)
proposed a method based on grammar rules and semantic analysis with a case frame dictionary for detection and
correction for Japanese Second Language (JSL) learners’ writing. In the approach based on grammar rules, it is
regarded as almost impossible to write entirely flawless rules of the language models.

Nampo et al. (2007) also examined detection and a correction method for all of the Japanese particles (not
limited to case particles) by using the clause information in a sentence. They separated a sentence into clauses
and used surface forms, parts of speech (POS) for each word in the target clause, the dependent clause and
clauses neighboring the target clause. For example, in a sentence "watashi-wa ringo-mo mikan-mo sukidesu
" (I like both apples and oranges.) if the clause "mikan-mo" (and oranges) is taken as a target clause, then the
particle or POS of information of the neighboring clause, "ringo-mo" (both apples…) are used as features. They
reported a recall of 84% and a precision of 64% for detection, and a recall of 14% and a precision of 78% for
correction. However, Nampo et al. (2007) conducted evaluation on only 84 selected sentences from learners’
essays, which may be too small-scale to present an accurate assessment of its effectiveness.

As Chodorow and Leacock (2000) mention, it is difficult to build a model of incorrect usage. Thus, I considered
proceeding without such a model: representing an appropriate word usage and comparing a novel example
to that model. Firstly, I identify an appropriate usage model of Japanese particles and then differentiate an
incorrect usage of Japanese particles by using such a model. In other words, the occurrences are identified as
incorrect particle usage by using the appropriate case particle usage model.

Automatic Error Detection Method for Japanese Particles

57

3. Automatic Identification of Japanese Case Particles
3-1. Appropriate Case Particle Model
I conducted an experiment on extracting appropriate patterns of case particle usage from a Japanese corpus to
highlight inappropriate usages because models of inappropriate usages are hard to come by. I started with the
Japanese particles because particle errors are frequent in JSL writing and are likely to result in misunderstanding
of a sentence. I used a newspaper corpus for creating a model that diagnoses correct use of case particles. I used
eight particles: “ga(が)”, “wo (を)”, “ni (に)”, “de (で)”, “to (と)”, “he (へ)”, “yori (より)” and “kara (から)”.
Figure 1 shows the number of all case particles appearing in Mainichi-shimbun Japanese newspapers for half
a year. As the figure shows, “wo (を)” is the most frequent, followed by “ni (に)”, “ga (が)”, “de (で)”, “to (
と)” and so forth. I selected the five most frequently occurring case particles and trained a model to choose a
proper usage of a particle from the newspaper text corpus and to decide between one case particle and all other
particles such as between particle “ga (が)” and all others, particle “wo (を)” and the others, and so forth.

Figure 1: The Number of Occurrences of All Case Particles

3-2. Experimental Setup
Language Model
I used an N-gram model for sentence features to identify a correct language model. N-gram language models
are based on the idea that a word (or letter) is affected by neighboring words or letters. As Firth (1957)
famously states:　“you shall know a word by the company it keeps (p. 11),” the collocating words are a
key to learn which particle is most appropriate in a given context. If the combination of the word (or letter)
appears often, there is a strong collocation relation among those words (or letters). “N” indicates the number
of a word (or letter) such as N=1, 2, 3 and these are referred to as uni-gram, bi-gram and tri-gram models,
respectively (Manning & Schutze, 1999)(cf. Table1). An N-gram model can predict the “N” th item by using
the (N-1) th item as a condition. For example, the bi-gram language model is based on the probability of two

Polyglossia Vol. 18, February 2010

58

words (or letters) occurring together; the occurrence of a word (or letter) depends on one previous item in a
certain context, which represents how strongly the two items collocate. N-gram language models are already
incorporated into several studies (Kondou, 2000). I used a word-level N-gram model for error detection with the
machine learning method, SVMs.

Figure 2: Image of SVMs Classification

Machine Learning Method
I used SVMs, which are methods for categorization, to train the machine learning models used in the
experiments (here I used the TinySVM2 implementation). SVMs are robust text classification methods that are
widely used in the field of natural language processing, for such tasks as text classification, parts-of-speech
(POS) tagging, and dependency parsing. Training examples are labeled positive or negative and tagged with
features. The features are used to map each piece of data into a multi-dimensional space. If the features are
similar, they are mapped closely with each other; in this way the two different classes are separated into two
groups, “a” and “b” (cf. Figure2). SVMs maximize the differences between positive and negative examples; that
is, the mathematical modeling is optimized to learn what the difference is between these two groups.

uni-gram (1) “a” “あ ” “sky” “空 ”
bi-gram (2) “ab” “あい ” “sky is” “空は ”
tri-gram (3) “abc” “あいう ” “sky is blue” “空は青 ”

Table 1: Example of N-gram Collocation

training test
10,000 1,000
50,000 5,000
100,000 10,000
200,000 20,000

Table 2: Training & Test set

Polyglossia Vol. 18, February 2010

Figure 2: Image of SVMs Classification

Machine Learning Method

I used SVMs, which are methods for categorization, to train the machine learning models used in the experiments (here I used the

TinySVM2 implementation). SVMs are robust text classification methods that are widely used in the field of natural language

processing, for such tasks as text classification, parts-of-speech (POS) tagging, and dependency parsing. Training examples are

labeled positive or negative and tagged with features. The features are used to map each piece of data into a multi-dimensional

space. If the features are similar, they are mapped closely with each other; in this way the two different classes are separated into

two groups, “a” and “b” (cf. Figure2). SVMs maximize the differences between positive and negative examples; that is, the

mathematical modeling is optimized to learn what the difference is between these two groups.

uni-gram (1) “a” “あ” “sky” “空”

bi-gram (2) “ab” “あい” “sky is” “空は”

tri-gram (3) “abc” “あいう” “sky is blue” “空は青”

Table 1: Example of N-gram Collocation

training test

10,000 1,000

50,000 5,000

100,000 10,000

200,000 20,000

Table 2: Training & Test set

Data

The data was from half-a-year’s worth of articles from Mainichi-shimbun, a Japanese newspaper, from 2003, which consists of

about 20 million words. Sentences were first parsed with Cabocha3, a machine learning-based Japanese syntactic dependency parser

(Kudo & Matsumoto, 2002). Then, word and POS information was extracted from the words surrounding the target particles as

shown in Figure 4. The data was then separated into training data and test data with a ratio of ten to one. In this experiment, I chose

10,000 instances (one instance consists of one particle with surrounding word information) for the training data and 1,000 for the

Automatic Error Detection Method for Japanese Particles

59

Data
The data was from half-a-year’s worth of articles from Mainichi-shimbun, a Japanese newspaper, from 2003,
which consists of about one million characters. Sentences were first parsed with Cabocha3, a machine learning-
based Japanese syntactic dependency parser (Kudo & Matsumoto, 2002). Then, word and POS information was
extracted from the words surrounding the target particles as shown in Figure 4. The data was then separated
into training data and test data with a ratio of ten to one. In this experiment, I chose 10,000 instances (one
instance consists of one particle with surrounding word information) for the training data and 1,000 for the
test data: 50,000 for the training data and 5,000 for the test data and so on. Figure 3 shows the flow of the case
particle detection experiment. After being morphologically analyzed by CaboCha, the surface form and POS
information were extracted. SVMs were trained to create a language model to diagnose whether a case particle
is appropriate in a given context. Each of the classifiers was tested with test data to confirm how accurate the
classifier was with the metric below.

Procedure
Because SVMs optimize the difference between two groups, it is advisable to use the features that highlight
the divergence between the groups. I used the following features for SVMs: 1) surface forms of words, 2)
POS information within a window of ± 3 words from a case particle4 (Kudo & Matsumoto, 2002). In Figure
4, the target case particle is “wo (を)” and the surface forms of the tokens such as “nado (such as)”, “no (of)”,
“katsudou (activity)” are considered before “wo (を)”, and “sasaeru (to support)”, “supootaa (supporters)”, “wo
(particle)” are taken as the features after “wo (を)”. In addition, POS information such as “particle（など）”,
“particle（の）” ,“noun（活動）” is considered before “wo (を)”and “verb（支える）”, “noun（サポー
ター）”, “particle（を）” are considered after “wo (を)”. The dependency shows that the verb “sasaeru (to
support)” determines that “wo (を)” is required in this sentence.

Figure 3: Flow of Case Particle Identification Experiment

Polyglossia Vol. 18, February 2010

60

Wo
-3 -2 -1 0 +1 +2 +3

など の 活動 [を] 支える サポーター を
Reading nado no katsudou [wo] sasaeru sapootaa wo

Meaning such-as of activity [object
marker] to support supporter [object

marker]
Parts Of
Speech Particle Particle Noun [Particle] Verb Noun Particle

Dependency sasaeru (to support):Verb
English
meaning …supporters who support activities such as ….

Figure 4: Overview of Input Features

Metrics
Recall is the ratio of correctly retrieved instances to all target instances. Recall is calculated with the following
formula.

Recall =
Correctly Retrieved Instances

All Target Instances

Precision is the ratio of correctly retrieved instances to the instances the system determines as correct answers.
Precision is calculated with the following formula.

Precision =
Correctly Retrieved Instances
System's Detected Instances

I used the F score here to observe the coordination of recall and precision scores. F score presents the overall
performance of how well the system can detect the appropriate usage of particles.

Fscore =
2× Precision × Recall

Precision + Recall

Results
The result differs according to the kind of particle. The graph in Figure 5 shows the result of the experiment.
The object marker “wo (を)” had the best score of 81.4%, 70.1% for “ni (に)”, 66.9% for “ga (が)” and 54.2%
for “de (で)” and “to (と)”. The “wo (を)” is more easily detectable than the other particles, including “to (と)”
or “de (で)”, which have lower scores. The reason for low scores for “de (で)” and “to (と)” may reside in the
fact that the models for those particles were not trained as much because they were less frequently used in the
text than “ni (に)” or “wo (を)”. I consider that this result depends largely on the particle frequency distribution
in the corpus I used. Thus, I will equalize the number of each particle and try to minimize the disadvantages of
the less-frequent particles for the next experiment.

Automatic Error Detection Method for Japanese Particles

61

Figure 5: Result of Case Particle Experiment

4. Automatic Error Detection with a learner corpus
Second, I performed an experiment to see how the learned model is used to detect wrong usages of particles in a
learner corpus. The “wo (を)” model gave the best score among other particles, so I used the “wo (を)” particle
model to detect wrong usages of “wo (を)” in learners’ writing. The test data consist of sentences with correct
and incorrect usages of “wo (を)”. In this experiment, I used 100 and 200 instances from the learner corpus.
I used the model to pick out erroneous instances from the test sets (in which there are correct and incorrect
instances). In the 100-instance test set, there are 27 wrong usages and 73 correct usages of “wo (を)”. In the
200-instance test set, there are 43 wrong usages and 157 correct usages of “wo (を)”. The result shows 92.6%
for precision and 34.3% for recall with the former test set, and 95.2% for precision and 37.6% recall for the
latter.

100 200
Precision 92.6% 95.2%
Recall 34.3% 37.6%
F score 50% 53.9%

Table 3: Result of error detection experiment of “wo (を)”

Here, recall is the ratio of correctly retrieved wrong usages of “wo (を)” to all incorrect instances, while
precision is the ratio of correctly retrieved wrong usages to all retrieved instances. I found that one of the
reasons for low recall results derives from the variations of Japanese writing, that is, the learners tend to use
Japanese phonetic characters, hiragana, whereas kanji, or Chinese characters, are used in ordinary Japanese. The
training sentences I used are extracted from Japanese newspaper articles where kanji characters are always used
when appropriate. Thus, when the learners use hiragana instead of kanji, the model classifies them as wrong
usages since it has never seen such usages. On the other hand, high precision shows that the model has high
performance in detecting incorrect usages of particles. Below are the examples of sentences 5 that were retrieved
as incorrect usages of “wo (を)”.

Polyglossia Vol. 18, February 2010

62

1. ... けんこう｜の｜ため｜[を]｜しんじる｜。｜＜ EOS6＞
...believe in it for the health...

2. ... が｜この｜きせい｜[を]｜さんどうする｜。｜＜ EOS ＞
...(somebody) agrees with this regulation...

3. ... で｜も｜たばこ｜[を]｜さわる｜こと｜が｜...
...thing (that one) gets in tobacco...

5. Conclusion
In this article, I proposed an approach for detecting appropriate usage models of Japanese case particles in
order to create an automatic error detection system for JSL learners’ writing. The experiment resulted in
different performance scores according to the kind of case particle, and the case particle “wo (を)” had the most
significant result among all case particles. This finding may depend heavily on the number of times a particle is
used in a text, “wo (を)” being the most frequently occurring particle in the corpus I used for this experiment,
which is a factor I will take into account in future work. In future studies, I will also examine how the choice
of different features affects the results and how much the appropriate model approach can help automatic case
particle error detection.

Notes
1. http://www2.kokken.go.jp/eag/wiki.cgi?page=taiyakuDBn%2Ftop
2. http://chasen.org/_taku/software/TinySVMS/
3. http://chasen.org/_taku/software/cabocha/
4. A preliminary experiment with a window size of three words provided the best result among the other sizes

of 4 and case particle is theoretically decided by the neighboring words and the verb information the particle
depends on.

5. Kanji scripts were changed into hiragana
6. EOS means “the end of sentence”.

References
Brockett, C., Dolan, W., & Gamon, M. (2006). Correting ESL Errors Using Phrasal SMT Techniques.

Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of
the ACL, 249–256.

Chodorow, M., & Leacock, C. (2000). An Unsupervised Method for Detecting Grammatical Errors.
Proceedings of the 6th Applied Natural Language Processing Conference, 140–147.

Chodorow, M., Tetreault, J., & Han, N.-R. (2007). Detection of grammatical errors involving prepositions.
Proceedings of the 4th ACL–SIGSEM Workshop on Prepositions, 25–30.

De Felice, R., & Pulman, S. (2007). Automatically acquiring models of prepositional use. Proceedings of the
4th ACL–SIGSEM Workshop on Prepositions, 45–50.

De Felice, R., & Pulman, S. (2008). A classifier-based approach to preposition and determiner error correction
in L2 English.
Proceedings of the 22nd International Conference on Computational Linguistics (COLING 2008), 169–176.

Automatic Error Detection Method for Japanese Particles

63

Firth, J. R. (1957). A synopsis of linguistic theory 1930-1955. In F.R.Palmer (Ed.), In Studies in Linguistic
Analysis (pp. 1–32).
U.K.: Oxford:Philological Society. (Reprinted Selected Papers of J.R.Firth 1952-1959, London:Longman,
1968)

Imaeda, K., Kawai, A., Ishikawa, Y., Nagata, R., & Masui, F. (2003). Error Detection and Correction of Case
Particles in Japanese Learner’s Composition. Proceedings of the Information Processing Society of Japan
SIG, 39–46.

Kamata, O., & Yamauchi, H. (1999). KY corpus versition 1.1 (Report). Dainigengo toshiteno Nihongo no
shuutoku nikansuru sougou kenkyu group (Vocaburary Acquisition Study Group).

Kondou, M. (2000). N-gram toukeishori wo mochiita mojiretsubunseki niyoru nihonkotenbungaku no kenkyu.
Jinbun kenkyu:University of Chiba, 29.

Kudo, T., & Matsumoto, Y. (2002). Japanese dependency analyisis using cascaded chunking. Proceedings of the
6th Conference on Computational Natural Language Learning (CoNLL), 63–69.

Manning, C., & Schutze, H. (1999). Foundations of statistical natural language processing. Cambridge, U.K.:
The MIT Press.

Mays, E., Damerau, F., & Mercer, R. (1991). Context based spelling correction. Information Processing and
Management, 23(5),517–522.

Nagata, R., Wakana, T., Kawai, A., Morihiro, K., Masui, F., & Isu, N. (2006). Kasan Hukasan no Hantei ni
Motozuita Eibun no Ayamarikenshutsu [Recognizing errors in english writing based on the mass count
distinction]. Proceedings of the Institute of Electronics, Information and Communication Engineers, J89-
D(8), 1777–1790.

Nampo, R., Ototake, H., & Araki, K. (2007). Bunsetunai no tokutyo wo motiita nihongo josi ayamari no
jidoukennshutu to kousei [Automatic Error Detection and Correction of Japanese Particles Using Features
within Bunsetsu]. Proceedings of the Information Processing Society of Japan SIG, 107–112.

Suzuki, H., & Toutanova, K. (2006a). Kikaigakushu niyoru Nihongo Kakujoshi no Yosoku [Prediction of
Japanese Case Markers Using Machine Learning Methods]. Proceedings of the 12th Annual Meeting of the
Society of Natural Language Processing,1119–1122.

Suzuki, H., & Toutanova, K. (2006b). Learning to Predict Case Makers in Japanese. Proceedings of the 21st
International Conference on Computational Linguistics and 44th Annual Meeting of the Association for
Computational Linguistics(ACL),1049–1056.

Tetreault, J., & Chodorow, M. (2008). The Ups and Downs of Preposition Error Detection in ESL Writing.
Proceedings of the 22nd International Conference on Computational Linguistics (COLING 2008).

Tono, Y. Learner Corpus: Resources. (n.d.). Retrieved June 15, 2009, from http://leo.meikai.ac.jp/_tono/
Wilcox-O’Hearn, A., Hirst, G., & Budanitsky, A. (2008). Real-word spelling correction with trigrams: A

reconsideration of the Mays, Damerau, and Mercer model. Proceedings of 9th International Conference
on Intelligent Text Processing and Computational Linguistics (CICLing-2008)(Lecture Notes in Computer
Science (CICLing-2008)(Lecture Notes in Computer Science Vol.4919), 605–616.

